在△ABC中,AB=2根号5,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长,
展开全部
解:∵AC=4,BC=2,AB=2√ 5 ,∴AC^2+BC^2=AB^2,
∴△ACB为直角三角形,
∠ACB=90°.
分三种情况:如图(1),过点D作DE⊥CB,垂足为点E.易证△ACB≌△BED,
易求CD=2√ 10 ;
如图(2),过点D作DE⊥CA,垂足为点E.
易证△ACB≌△DEA,
易求CD=2 √13 ;
如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵∠DAB+∠DBA=90°,
∴∠EBD+∠DAF=90°,
∵∠EBD+∠BDE=90°,
∠DAF+∠ADF=90°,
∴∠DBE=∠ADF,
∵∠BED=∠AFD=90°,DB=AD,∴△AFD≌△DEB,
易求CD=3 √2 .
∴△ACB为直角三角形,
∠ACB=90°.
分三种情况:如图(1),过点D作DE⊥CB,垂足为点E.易证△ACB≌△BED,
易求CD=2√ 10 ;
如图(2),过点D作DE⊥CA,垂足为点E.
易证△ACB≌△DEA,
易求CD=2 √13 ;
如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵∠DAB+∠DBA=90°,
∴∠EBD+∠DAF=90°,
∵∠EBD+∠BDE=90°,
∠DAF+∠ADF=90°,
∴∠DBE=∠ADF,
∵∠BED=∠AFD=90°,DB=AD,∴△AFD≌△DEB,
易求CD=3 √2 .
展开全部
解:∵AC=4,BC=2,AB=2 5 ,
∴AC2+BC2=AB2,
∴△ACB为直角三角形,∠ACB=90°.
分三种情况:
如图(1),过点D作DE⊥CB,垂足为点E.易证△ACB≌△BED,
易求CD=2 10 ;
如图(2),过点D作DE⊥CA,垂足为点E.易证△ACB≌△DEA,
易求CD=2 13 ;
如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵∠DAB+∠DBA=90°,
∴∠EBD+∠DAF=90°,
∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,
∴∠DBE=∠ADF,
∵∠BED=∠AFD=90°,DB=AD,
∴△AFD≌△DEB,易求CD=3 2 .
中间空格处均为根号
∴AC2+BC2=AB2,
∴△ACB为直角三角形,∠ACB=90°.
分三种情况:
如图(1),过点D作DE⊥CB,垂足为点E.易证△ACB≌△BED,
易求CD=2 10 ;
如图(2),过点D作DE⊥CA,垂足为点E.易证△ACB≌△DEA,
易求CD=2 13 ;
如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵∠DAB+∠DBA=90°,
∴∠EBD+∠DAF=90°,
∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,
∴∠DBE=∠ADF,
∵∠BED=∠AFD=90°,DB=AD,
∴△AFD≌△DEB,易求CD=3 2 .
中间空格处均为根号
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询