函数+f(x)=(x^3+1)/x(x-1)的渐近线
2个回答
展开全部
f(x) = (x^3+1)/[x(x-1)]
垂直渐近线 x = 0, x = 1, 无水平渐近线。
设斜渐近线 y = kx + b
k = lim<x→∞>f(x)/x = lim<x→∞>(x^3+1)/[x^2(x-1)] = 1
b = lim<x→∞>f(x)-kx = lim<x→∞> {(x^3+1)/[x(x-1)]-x}
= lim<x→∞> (1+x^2)/[x(x-1)] = 1,
斜渐近线 y = x + 1
垂直渐近线 x = 0, x = 1, 无水平渐近线。
设斜渐近线 y = kx + b
k = lim<x→∞>f(x)/x = lim<x→∞>(x^3+1)/[x^2(x-1)] = 1
b = lim<x→∞>f(x)-kx = lim<x→∞> {(x^3+1)/[x(x-1)]-x}
= lim<x→∞> (1+x^2)/[x(x-1)] = 1,
斜渐近线 y = x + 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询