已知f(x)=-x³-x+1,(x属于R),证明y=f(x)是定义域上的减函数,且满足等式f(x)=0的实数值x至多只有一个

tanton
2010-09-10 · TA获得超过4万个赞
知道大有可为答主
回答量:3019
采纳率:66%
帮助的人:1747万
展开全部
设,x1>x2 ,x1x2∈(-1,1)
f(x1)-f(x2)=(x1^3+x1+1)-(x2^3+x2+1)=( x1^3-x2^3)+( x1-x2)
因为x1>x2 ,所以( x1^3-x2^3)>0, ( x1-x2) >0
所以f(x1)-f(x2) >0
所以f(x)在(-1,1)内为单调递增函数。
且f(-1)=-1,f(1)=3
所以,存在唯一的x0,x0 ∈(-1,1),且f(x0)=0
因为f(x)在(-1,1)内为单调递增函数,所以,f(x)的函数图象在直角坐标系中有且仅有可能和x轴相交一次,所以满足等式f(x)=0的实数值x至多只有一个。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式