
重心和三角形的三个顶点组成的三角形面积相等吗?
1个回答
展开全部
重心和三角形3个顶点组成的3个三角形面积相等。
S(△BOC)=1/2×h1a=1/2×1/3ha=1/3S(△ABC);同理可证S(△AOC)=1/3S(△ABC),S(△AOB)=1/3S(△ABC) 所以,S(△BOC)=S(△AOC)=S(△AOB)。
重心将中线分成了2:1,因此,从重心做垂直线到底边和从顶点到底边的垂直线的比例是1:3,所以由中心与底边围成的三角形是整个三角形面积的三分之一。同理可证明,重心和三顶点连线所形成的三个三角形面积都是整个三角形的三分之一。
判定法:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2024-11-13 广告
苏州谭祖自动化科技有限公司专业提供高速精密分割器,凸轮及其他五金配件。随着现代工业对自动化、高速化、高精度化的日益追求,更可靠的凸轮分度器已成为当今世界上精密驱动的主流装置.它们作为自动化机器的核心传动装置发挥着至关重要的作用。此产品广泛用...
点击进入详情页
本回答由苏州谭祖自动化科技有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询