高数中的数列收敛充要条件是什么?关于发散与收敛的问题。急求,谢谢
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
1)数列收敛的基本定义
设{Xn}为一已知数列,A是一个常数。如果对于任意给定的正数ε,总存在一个正整数N=N(ε),使得当n>N时,有|Xn-A|<ε,则称数列{Xn}当n趋于无穷时以A为极限,或称数列{Xn}收敛于A。
2)夹挤定理
如果有三个数列{Pn}{Xn}{Qn}。且当n足够大以后,满足条件Pn≤Xn≤Qn。如果当n趋于无穷时,{Pn}和{Qn}都收敛于A,那么数列{Xn}也收敛于A。
3)单调有界原理
任何单调(单调递增或递减)且有界的数列都收敛。
扩展资料
收敛数列的性质:
有界性
定义:设有数列Xn,若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。
定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。
数列有界是数列收敛的必要条件,但不是充分条件
保号性
如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
相互关系
收敛数列与其子数列间的关系
子数列也是收敛数列且极限为a恒有|Xn|<M
若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。
如果数列{
参考资料