导数和偏导数的区别?
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限(有过极限存在的话)。
一元函数,一个y对应一个x,导数只有一个。
二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的掘嫌旦导数,称之为偏导。
求偏导时要注意,对一个变量求导,则视另一个变量为常数,只对改变量求导,从而将偏导的求者禅解转化成了一元函数的求导了。
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可判扰导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。
中文名:导数
外文名:Derivative
提出者:牛顿、莱布尼兹
提出时间:17世纪
应用领域:数学(微积分学)、物理学