当x趋向于无穷时lim(1+2/x)3x次方的极限
当x趋向于无穷时lim(1+2/x)3x次方的极限
当x趋向于无穷时
lim(1+2/x)3x=lim[1+1/(x/2)]^[(x/2)×6]
=lim{[1+1/(x/2)]^(x/2)}^6
=e^6
x趋向于无穷时,(x-2/x+1)的2x+3次方的极限
原式=limx→∞ {[1-3/(x+1)]^[-(x+1)/3]}^[-3(2x+3)/(x+1)]
=e^limx→∞ -3(2x+3)/(x+1)
=e^limx→∞ -3(2+3/x)/(1+1/x)
=e^[-3*(2+0)/(1+0)]
=e^-6。
当x趋向于无穷时(x-1除以x+3)的x+2次方的极限
设 t=x+3,
则 [(x-1)/(x+3)]^(x+2)=(1-4/t)^(t-1)=[(1-4/t)^(t/4)]^4*(1-4/t)^(-1),
因此,当x趋于无穷时,t趋于无穷,极限为 (1/e)^4*1=1/e^4。
当x趋向于无穷,求lim(x^2)/2的极限
- 该极限不存在!
-
或说极限为无穷大。
lim(x/(x+2))的3x次方,x趋向于无穷
设t=(x/(x+2))^3x,则lnt=3xln(x/(x+2))
1/3lim{lnt}=lim{xln[x/(x+2)]}
=lim{ln[1-2/(x+2)]/[1/x]} (化为0/0型未定式,用洛必达法则)
=lim{[(x+2)/x*2/(x+2)^2]/[-1/x^2]}
=lim{[-2/(x+2)]}
=0
即lim{lnt}=0
∴limt=lim(x/(x+2))=1
lim趋向于无穷大时(e的x/2次方)-1的极限
=lim x分之2
=0
当x趋向于无穷大时,(2/3)的x次方,求极限?
lim(x-->∞)(2/3)^x
=lim(x-->∞)1/(3/2)^x
=0
求极限 lim(xsin2/x+sin3x/x) x趋向于无穷
lim(xsin2/x+sin3x/x) = lim(xsin2/x)+limsin3x/x
x趋向无穷大2/x趋向于0,使用等价无穷小替换lim(xsin2/x)=2,又因为sin3x有界而x为无穷大,有界/无穷大=0,所以
lim(xsin2/x+sin3x/x) =2
lim(x趋向于无穷大)(5x^3-3x+1) 求极限
因为
lim(x趋向于无穷大)1/(5x^3-3x+1)
=lim(x趋向于无穷大)(1/x^3)/(5-3/x^2+1/x^3)
=0
所以
原式=∞。
arctan(x^2)/x的极限当x趋向于无穷
当x→∞时,由影象可以看出arctan(x^2)→π/2 (即tant的反函式影象,其中该处的t为x^2)
又∵当x→∞时,1/x→0
故此题为无穷小×有界函式的问题
∴lim(x→∞)arctan(x^2)/x=0