怎样求二维随机变量的期望值和方差?
对于二维连续变量的分布函数F(x,y),一般应用其概率密度函数f(x,y)的定积分求解;对于非连续变量,需要分别累加求得【与一维随机变量的求法相仿】。
∴本题中,当x∈(0,∞)、y∈(0,∞)时,分布函数F(x,y)=∫(-∞,x)du∫(-∞,y)f(u,v)dv=∫(0,x)du∫(-0,y)2e^(-2u-v)dv=∫(0,x)2e^(-2u)du∫(-0,y)e^(-v)dv=[1-e^(-2x)][1-e^(-y)]。
当x∉(0,∞)、y∉(0,∞)时,分布函数F(x,y)=∫(-∞,0)du∫(-∞,0)f(u,v)dv=0。
扩展资料:
随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。
事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。
可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。
离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律(概率函数)而不是分布函数来描述离散型随机变量。
参考资料来源:百度百科——二维随机变量