用换元法求3/x+1/(x-1)+4/(x-2)+4/(x-3)+1/(x-4)+3/(x-5)=0
用换元法求3/x+1/(x-1)+4/(x-2)+4/(x-3)+1/(x-4)+3/(x-5)=0
这道题要求计算能力很强
3/x+1/(x-1)+4/(x-2)+4/(x-3)+1/(x-4)+3/(x-5)=0
[3/x+3/(x-5)]+[1/(x-1)+1/(x-4)]+[4/(x-2)+4/(x-3)]=0
(6x-15)/(x^2-5x)+(2x-5)/(x^2-5x+4)+(8x-20)/(x^2-5x+6)=0
(2x-5)[3/(x^2-5x)+1/(x^2-5x+4)+4/(x^2-5x+6)]=0
所以2x-5可以等于0 所以x=5/2
由[3/(x^2-5x)+1/(x^2-5x+4)+4/(x^2-5x+6)]=0
得:3(x^2-5x+4)(x^2-5x+6)+(x^2-5x)(x^2-5x+6)+4(x^2-5x)(x^2-5x+6)=0 (实际上就是把式子合并后,提出分子)
然后继续就行了
继续下去的话会得到以x^2-5x为未知值的方程,解出来就是答案了
答案一共5个 5/2 正负根号下17+5/2 正负根号下7+5/2
3/x+1/(x-1)+4/(x-2)+4/(x-3)+1/(x-4)+3/(x+5)=0求x等于几
显而易见,X必须是负数且要大于-5,可以进一步确定X在-4到-3之间,进一步计算可得X≈-3.77
3/(x-2)-4/(x-1)=1/(x-4)-2/(x-3) 大概是要用换元法的。。。
3/(x-2)+2/(x-3)=4/(x-1)+1/(x-4)
(5x-6)/(x^2-5x+6)=(5x-17)/(x^2-5x+4)
(5x-6)(x^2-5x+4)=(5x-17)(x^2-5x+6)
5x^3-31x^2-10x-24=5x^3-42x^2-75x-102
11x^2+65x+78=0
x=(-65±√793)/22
3/(x-2)-4/(x-1)=1/(x-4)-2/(x-3)
[3(x-1)-4(x-2)]/[(x-1)(x-2)]=[(x-3)-2(x-4)]/[(x-3)(x-4)]
-(x-5)/[(x-1)(x-2)]=-(x-5)/[(x-3)(x-4)]
-(x-5)(x-3)(x-4)=-(x-5)(x-1)(x-2)
(x-5)*[2(2x-5)]=0
2(x-5)(2x-5)=0
x=5或x=5/2
经检验,符合条件
1/(x-6)-2/(x-5)-3/(x-4)=4/(x-3)-5/(x-2)-6/(x-1) 急求解
这一看就是个一元五次方程。根据阿贝尔定理,不存在公式解法。
所以,只能用非主流方法。
1)观察法,令各项为1,可得x=7.等式成立。(最靠谱的解法)
2)牛顿迭代法。转化原方程为
x=1/(2/(x-5)+3/(x-4)+4/(x-3)-5/(x-2)-6/(x-1))+6
给x一个初始值,通过迭代法,一次次的求值,找出最后稳定的值即为一个解。
令x=0,每次计算的值为
6.16620498614958470000
6.49957789212134780000
6.67810488732733720000
6.78490912779506150000
6.85292582225230620000
6.89793726847936290000
6.92847427347434230000
6.94953868495514550000
6.96423486159623550000
6.97456908542082930000
6.98187617221609540000
6.98706294528827150000
6.99075480104044990000
6.99338774169853310000
6.99526810656591280000
6.99661234003314810000
6.99757398682192730000
6.99826228550014840000
6.99875511425455250000
6.99910807635249820000
6.99936091355284780000
6.99954205248159230000
6.99967183736476970000
6.99976483376847100000
6.99983147292604620000
6.99987922674466120000
6.99991344813500760000
6.99993797234535630000
6.99995554745453940000
6.99996814265419150000
6.99997716906229690000
6.99998363791022090000
6.99998827387789820000
6.99999159630085540000
6.99999397736008970000
6.99999568378045290000
6.99999690671226470000
6.99999778314529930000
6.99999841125490630000
6.99999886139974770000
6.99999918400335730000
6.99999941520251130000
6.99999958089518690000
6.99999969964157830000
6.99999978474314500000
6.99999984573259490000
6.99999988944169700000
6.99999992076655180000
6.99999994321602960000
6.99999995930482210000
6.99999997083512330000
6.99999997909850520000
6.99999998502059560000
6.99999998926476060000
6.99999999230641200000
6.99999999448626210000
6.99999999604848800000
6.99999999716808310000
6.99999999797045900000
6.99999999854549500000
6.99999999895760450000
6.99999999925294960000
6.99999999946461400000
6.99999999961630600000
6.99999999972501910000
6.99999999980293010000
6.99999999985876630000
6.99999999989878320000
6.99999999992746070000
6.99999999994801310000
6.99999999996274270000
6.99999999997329870000
6.99999999998086420000
6.99999999998628650000
6.99999999999017140000
6.99999999999295590000
6.99999999999495160000
6.99999999999638160000
6.99999999999740650000
6.99999999999814190000
6.99999999999866860000
6.99999999999904610000
6.99999999999931610000
6.99999999999950970000
6.99999999999964830000
6.99999999999974780000
6.99999999999981880000
6.99999999999987030000
6.99999999999990670000
6.99999999999993250000
6.99999999999995200000
6.99999999999996540000
6.99999999999997510000
6.99999999999998220000
6.99999999999998670000
6.99999999999999110000
6.99999999999999380000
6.99999999999999560000
6.99999999999999730000
6.99999999999999820000
最后得出,x=7。
附:
1.阿贝尔定理:
16 世纪时,义大利数学家塔塔利亚和卡当等人,发现了一元三次方程的求根公式。这个公式公布没两年,卡当的学生费拉里就找到了四次方程的求根公式。当时数学家们非常乐观,以为马上就可以写出五次方程、六次方程,甚至更高次方程的求根公式了。然而,时光流逝了几百年,谁也找不出这样的求根公式。
大约三百年之后,在1825年,挪威学者阿贝尔(Abel)终于证明了:一般的一个代数方程,如果方程的次数n≥5 ,那么此方程不可能用根式求解。即不存在根式表达的一般五次方程求根公式。这就是著名的阿贝尔定理。
2.解题程式(Perl)
open OUTPUT,">b.txt" or die "Can't open b.txt: $!";
my $x=<STDIN>;
chomp($x);
while ($x!=1/(2/($x-5)+3/($x-4)+4/($x-3)-5/($x-2)-6/($x-1))+6){
$x=1/(2/($x-5)+3/($x-4)+4/($x-3)-5/($x-2)-6/($x-1))+6;
printf OUTPUT "%.20f\n",$x;
my $user=<STDIN>;
}
close OUTPUT;
解方程(3/x)+(1/x-1)+(4/x-2)+(4/x-3)+(1/x-4)+(3/x-5)=0谢谢了,大神帮忙啊
是3/x+1/(x-1)+4/(x-2)+4/(x-3)+1/(x-4)+3/(x-5)=0吧?不然也太简单了。 3/x+1/(x-1)+4/(x-2)+4/(x-3)+1/(x-4)+3/(x-5)=0的解共五个,为: x=5/2,x=(5±sqrt(7))/2,x=(5±sqrt(17))/2。
解方程:1/(X-4)+4/(X-1)=2(/X-3)+3/(X-2)
1/(X-4)+4/(X-1)=2/(X-3)+3/(x-2)
1/(x-4)-2/(x-3)=3/(x-2)-4/(x-1)
[(x-3)-2(x-4)]/(x-4)(x-3)=[3(x-1)-4(x-2)]/(x-2)(x-1)
(5-x)/(x^2-7x+12)=(5-x)/(x^2-3x+2)
(1):5-x=0
x=5
(2):x^2-7x+12=x^2-3x+2
x=2.5
方程的解为:X1=5,X2=2.5
3/(x-2)一4/(x一1)=1/(x-4)-2/(x-3)
1/(x-4)-3/(x-2)=2/(x-3)-4/(x-1),
(-2x+10)/(x^2-6x+8)=(-2x+10)/(x^2-4x+3),
(-2X+10)[(x^2-6x+8)-(x^2-4x+3) ]
所以(-2X+10)(-2X+5)=0,
X1=5,X2=5/2,
经检验分母都不为0,
它们都是原方程的根。
分式方程1/(x-4)-2/(x-3)=3/(x-2)-4/(x-1)
1/(x-4)-2/(x-3)=3/(x-2)-4/(x-1)
[(x-3)-2(x-4)]/[(x-4)(x-3)]=[3(x-1)-4(x-2)]/[(x-2)(x-1)]
(-x+5)/[(x-4)(x-3)]=(-x+5)/[(x-2)(x-1)]
∴-x+5=0,或者(x-4)(x-3)=(x-2)(x-1)
解得:x1=5 x2=2.5
经检验都是原方程的根
已知x=10,求1/x-1 + 1/(x-1)(x-2) + 1/(x-2)(x-3) + 1/(x-3)(x-4) + 1/(x-4)(x-5)
答案是1/5.也就是0.2。这个有技巧的,用这个公式展开就快了:1/(x-a)(x-b)=(a-b)*[1/(x-a)+1/(x-b)],这里a-b等于-1,a和b每一个不一样,一个个展开最后剩1/(x-5)也就是最后一项,代入x=10就解决了。