设a,b,c>0,证明:a^2/b+b^2/c+c^2/a>=a+b+c

老师说这道题很简单没这么复杂吧!~... 老师说 这道题很简单 没这么复杂吧!~ 展开
tanton
2010-09-10 · TA获得超过4万个赞
知道大有可为答主
回答量:3019
采纳率:66%
帮助的人:1758万
展开全部
(c²/a)+(a²/b)+(b²/c)≥a+b+c,且仅当a=b=c时取等号

用费马不等式证明

由费马不等式的一般形式可得 三元形式的费马不等式
(x1²+x2²+x3²)(y1²+y2²+y3²)≥(x1y1+x2y2+x3y3)²
且仅当 x1:y1=x2:y2=x3:y3时取等号

取x1=√a,x2=√b,x3=√c,y1=√(c²/a),y2=√(a²/b),y3=√(b²/c)代入

得 (a+b+c)[(c²/a)+(a²/b)+(b²/c)]≥[√(c²)+√(a²)+√(b²)]²
因为 a>0,b>0,c>0
所以 (a+b+c)[(c²/a)+(a²/b)+(b²/c)]≥(c+a+b)²
因为 a+b+c>0
所以(c²/a)+(a²/b)+(b²/c)≥a+b+c

且仅当√a:√(c²/a)=√b:√(a²/b)=√c:√(b²/c) 时取等号
即√(a²/c²)=√(b²/a²)=√(c²/b²) 时取等号
因为a>0,b>0,c>0
所以 a/c=b/a=c/b时取等号

设 a/c=b/a=c/b=k
则 a=kc,b=ka,c=kb
此三式相加得,a+b+c=k(a+b+c)
因为a+b+c>0
所以 k=1
即a/c=b/a=c/b=1
所以 仅当a=b=c时取等号

(c²/a)+(a²/b)+(b²/c)≥a+b+c,且仅当a=b=c时取等号
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式