已知P(4,0)是圆x2+y2=36内的一点,A,B是圆上两动点,且满足角APB=90度.求矩形APBQ的顶点Q的轨迹方程.

tanton
2010-09-10
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.

又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)

又|AR|=|PR|=根号(x-4)2+y2
所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0

因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.

设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=(x+4)/2 , y1=(y+0)/2

代入方程x2+y2-4x-10=0,得

((x+4)/2)2+(y/2)2-4*(x+4)/2-10=0

整理得:x2+y2=56,这就是所求的轨迹方程
泡泡ffj
2010-09-10
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.
又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)
又|AR|=|PR|= ,所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0
因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.
设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1= ,
代入方程x2+y2-4x-10=0,得 -10=0
整理得:x2+y2=56,这就是所求的轨迹方程.

参考资料: http://wenku.baidu.com/view/aaec0412a2161479171128d7.html

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式