高数 极限 求解 详细一点
4个回答
展开全部
根据等价无穷小2^x=1+xln2
得到=[1+ln2(x+1)]^(1/2/x)
=[1+x(ln2+1)]^[1/x/(ln2+1)*(ln2+1)/2]
=e^[(ln2+1)/2]
得到=[1+ln2(x+1)]^(1/2/x)
=[1+x(ln2+1)]^[1/x/(ln2+1)*(ln2+1)/2]
=e^[(ln2+1)/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x->0
2^x =1+(ln2)x +o(x)
2^x +x =1+[1+(ln2)]x +o(x)
arcsin2x =2x +o(x)
lim(x->0) ( 2^x +x) ^(1/arcsin2x)
=lim(x->0) { 1+[1+(ln2)]x } ^[1/(2x)]
=e^[(1+ln2)/2 ]
=√2. e^(1/2)
2^x =1+(ln2)x +o(x)
2^x +x =1+[1+(ln2)]x +o(x)
arcsin2x =2x +o(x)
lim(x->0) ( 2^x +x) ^(1/arcsin2x)
=lim(x->0) { 1+[1+(ln2)]x } ^[1/(2x)]
=e^[(1+ln2)/2 ]
=√2. e^(1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询