定积分的换元有哪些方法?
展开全部
定积分的换元,三个地方都要换。令想换的地等于t,解出x关于t的表达式。接着对x关于t的函数进行微分,dx=f'(t)dt,不定积分换元到此结束。
定积分的的第三个需要换元的地方是上下限。原来的式子是x的上下限对x积分,变成对t积分了,得把x的上下限换成t的上下限。
用x的上下限,通过这个表达式,解出t的上下限。这里需要重点注意,没人规定上限一定大于下限,用x的下限解出t的下限用x的上限解出t的上限,即便下限数大,也要写下边。这是规矩。
定积分
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询