如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD. (1)求证:△ADE≌△CBF;
2个回答
展开全部
证明:(1)在▱ABCD中,AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=CF,在△ADE和△CBF中,
AD=BC
∠A=∠C
AE=CF
∴△ADE≌△CBF(SAS);
(2)是菱形.理由如下:连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,
∴四边形AEFD是平行四边形,∴EF∥AD,∵AD⊥BD,∴EF⊥BD,
由(1)可得BE=DF,又AB∥CD,∴BE∥ DF,
∴四边形BEDF是平行四边形;
∴四边形BFDE是菱形.
AD=BC
∠A=∠C
AE=CF
∴△ADE≌△CBF(SAS);
(2)是菱形.理由如下:连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,
∴四边形AEFD是平行四边形,∴EF∥AD,∵AD⊥BD,∴EF⊥BD,
由(1)可得BE=DF,又AB∥CD,∴BE∥ DF,
∴四边形BEDF是平行四边形;
∴四边形BFDE是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询