怎样用正弦定理求解?
1个回答
展开全部
由正弦定理: a/sin A=b/sin B=c/sin C
∴b=a×sin B/sin A c=a×sin C/sin A
代入原式并化简得:sin² B-sin² C=sin A=√2÷2
∴ √2÷2=sin² B-sin² C
=(sin B+sin C)(sin B-sin C)
(和差化积)=2×sin (B/2+C/2)×cos (B/2-C/2)×2×cos (B/2+C/2)×sin (B/2-C/2)
=sin (B+C)sin (B-C)
=√2÷2×sin (B-C)
∴sin (B-C)=1,即B-C=π/2
∴b=a×sin B/sin A c=a×sin C/sin A
代入原式并化简得:sin² B-sin² C=sin A=√2÷2
∴ √2÷2=sin² B-sin² C
=(sin B+sin C)(sin B-sin C)
(和差化积)=2×sin (B/2+C/2)×cos (B/2-C/2)×2×cos (B/2+C/2)×sin (B/2-C/2)
=sin (B+C)sin (B-C)
=√2÷2×sin (B-C)
∴sin (B-C)=1,即B-C=π/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询