1个回答
展开全部
设P是短轴的上端点,P(0,1)
设Q的坐标为(x,y)
则PQ距离=根号下x^2+(y-1)^2
就是求x^2+(y-1)^2的最大值
x^2+(y-1)^2=a^2(1-y^2)+(y-1)^2
=(1-a^2)(y-1/(1-a^2))^2+a^2+1-1/(1-a^2)
因为a>1所以(1-a^2)<0所以y=1/(1-a^2)时这个值最大,最大值为
a^2+1-1/(1-a^2)=a^4/(a^2-1)
所以PQ距离的最大值为a^2/√(a^2-1)
设Q的坐标为(x,y)
则PQ距离=根号下x^2+(y-1)^2
就是求x^2+(y-1)^2的最大值
x^2+(y-1)^2=a^2(1-y^2)+(y-1)^2
=(1-a^2)(y-1/(1-a^2))^2+a^2+1-1/(1-a^2)
因为a>1所以(1-a^2)<0所以y=1/(1-a^2)时这个值最大,最大值为
a^2+1-1/(1-a^2)=a^4/(a^2-1)
所以PQ距离的最大值为a^2/√(a^2-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询