求一道高数题18.
展开全部
该微分方程属于缺 x 型,即缺自变量型。
设 y' = p 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
微分方程化为 pdp/dy = p^3+p
p = 0 或 dp/dy = 1+p^2
p = dy/dx = 0, 得 y = C;
dp/dy = 1+p^2 ,得 dp/(1+p^2) = dy, arctanp = y+C1
p = dy/dx = tan(y+C1) = sin(y+C1)/cos(y+C1),
cos(y+C1)dy/sin(y+C1) = dx
ln[sin(y+C1)] = x+ lnC2, sin(y+C1) = C2e^x.
设 y' = p 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
微分方程化为 pdp/dy = p^3+p
p = 0 或 dp/dy = 1+p^2
p = dy/dx = 0, 得 y = C;
dp/dy = 1+p^2 ,得 dp/(1+p^2) = dy, arctanp = y+C1
p = dy/dx = tan(y+C1) = sin(y+C1)/cos(y+C1),
cos(y+C1)dy/sin(y+C1) = dx
ln[sin(y+C1)] = x+ lnC2, sin(y+C1) = C2e^x.
展开全部
这个是分布微分法,将正弦函数换到微分符号的后面,然后运用方法来一部部分布积分。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询