向量的坐标是怎么表示的?
向量的坐标表示这个向量的有向线段的终点坐标减去始点的坐标。
向量是一种具有大小和方向的量,在平面直角坐标系中,分别取x轴和y轴上的基地向量i、j;作一向量a,有且只有一对实数(x,y)是a=xi+yj,把这对实数(x,y)叫做向量a的坐标。
在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a等于xi加yj。我们把(x,y)叫做向量a的直角坐标,记作a等于(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
向量的坐标运算公式是λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。
实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当 |λ|>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍。