已知如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,
已知如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F(1)求证:GE=GF;(2)若...
已知如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F
(1)求证:GE=GF;(2)若BD=1,求DF的长 展开
(1)求证:GE=GF;(2)若BD=1,求DF的长 展开
1个回答
展开全部
(1)证明:∵DF∥BC,∠ACB=90°,
∴∠CFD=90°.
∵CD⊥AB,
∴∠AEC=90°.
在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,
∴Rt△AEC≌Rt△DFC.
∴CE=CF.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,
∴Rt△AFG≌Rt△DEG.
∴GF=GE.
(2)解:∵CD⊥AB,∠A=30°,
∴CE= 1/2AC= 1/2CD.
∴CE=ED.
∴BC=BD=1.
又∠ECB=∠A=30°,∠CEB=90°,
∴BE= 1/2BC= 1/2BD= 1/2.
在直角三角形ABC中,∠A=30°,
则AB=2BC=2.
则AE=AB-BE= 3/2.
∵Rt△AEC≌Rt△DFC,
∴DF=AE= 3/2.
∴∠CFD=90°.
∵CD⊥AB,
∴∠AEC=90°.
在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,
∴Rt△AEC≌Rt△DFC.
∴CE=CF.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,
∴Rt△AFG≌Rt△DEG.
∴GF=GE.
(2)解:∵CD⊥AB,∠A=30°,
∴CE= 1/2AC= 1/2CD.
∴CE=ED.
∴BC=BD=1.
又∠ECB=∠A=30°,∠CEB=90°,
∴BE= 1/2BC= 1/2BD= 1/2.
在直角三角形ABC中,∠A=30°,
则AB=2BC=2.
则AE=AB-BE= 3/2.
∵Rt△AEC≌Rt△DFC,
∴DF=AE= 3/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询