高数反常积分
4个回答
展开全部
let
1/[x(x^2+1) ]≡ A/x + (Bx+C)/(x^2+1)
=>
1≡ A(x^2+1) + (Bx+C)x
x=0, => A=1
coef. of x^2
A+B=0
B=-1
coef. of x => C=0
1/[x(x^2+1) ]≡ 1/x - x/(x^2+1)
∫(1->+∞) dx/[x(x^2+1) ]
=∫(1->+∞) [ 1/x - x/(x^2+1) ] dx
=[ ln|x/√(x^2+1)| ]|(1->+∞)
= (1/2)ln2 + lim(x->+∞) ln(x/√(x^2+1))
= (1/2)ln2 + 0
=(1/2)ln2
1/[x(x^2+1) ]≡ A/x + (Bx+C)/(x^2+1)
=>
1≡ A(x^2+1) + (Bx+C)x
x=0, => A=1
coef. of x^2
A+B=0
B=-1
coef. of x => C=0
1/[x(x^2+1) ]≡ 1/x - x/(x^2+1)
∫(1->+∞) dx/[x(x^2+1) ]
=∫(1->+∞) [ 1/x - x/(x^2+1) ] dx
=[ ln|x/√(x^2+1)| ]|(1->+∞)
= (1/2)ln2 + lim(x->+∞) ln(x/√(x^2+1))
= (1/2)ln2 + 0
=(1/2)ln2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |