求一道数学题,谢谢各位高手帮忙,好的话有加分
设f(n)=1+1/2+1/3+……+1/n,是否存在关于正整数n的函数g(x)使等式f(1)+f(2)+f(3)+……+f(n-1)=g(n).[f(n)-1]对于n≥...
设f(n)=1+1/2+1/3+……+1/n,是否存在关于正整数n的函数g(x)使等式f(1)+f(2)+f(3)+……+f(n-1)=g(n).[f(n)-1]对于n≥2的一切正实数都成立?
并证明你的结论
详细过程,谢谢
用假设然后是数学归纳法论证啊~~~ 展开
并证明你的结论
详细过程,谢谢
用假设然后是数学归纳法论证啊~~~ 展开
2个回答
展开全部
易知:
f(1)+f(2)+f(3)+……+f(n-1)+f(n)
=1+1+1/2+1+1/2+1/3+……+1+1/2+1/3+……+1/n
=n+(n-1)/2+(n-2)/3+……+1/n
=n+n/2+n/3+……+n/n-[1/2+2/3+……+(n-1)/n]
=n*(1+1/2+1/3+……+1/n)-(1-1/2+1-1/3+……+1-1/n)
=nf(n)-[n-1-f(n)+1]
=nf(n)+f(n)-n
故f(1)+f(2)+f(3)+……+f(n-1)=nf(n)-n
=n[f(n)-1]
故g(n)=n
f(1)+f(2)+f(3)+……+f(n-1)+f(n)
=1+1+1/2+1+1/2+1/3+……+1+1/2+1/3+……+1/n
=n+(n-1)/2+(n-2)/3+……+1/n
=n+n/2+n/3+……+n/n-[1/2+2/3+……+(n-1)/n]
=n*(1+1/2+1/3+……+1/n)-(1-1/2+1-1/3+……+1-1/n)
=nf(n)-[n-1-f(n)+1]
=nf(n)+f(n)-n
故f(1)+f(2)+f(3)+……+f(n-1)=nf(n)-n
=n[f(n)-1]
故g(n)=n
展开全部
f(1)+f(2)+f(3)+……+f(n-1)+f(n)
=1+1+1/2+1+1/2+1/3+……+1+1/2+1/3+……+1/n
=n+(n-1)/2+(n-2)/3+……+1/n
=n+n/2+n/3+……+n/n-[1/2+2/3+……+(n-1)/n]
=n*(1+1/2+1/3+……+1/n)-(1-1/2+1-1/3+……+1-1/n)
=nf(n)-[n-1-f(n)+1]
=nf(n)+f(n)-n
故f(1)+f(2)+f(3)+……+f(n-1)=nf(n)-n
=n[f(n)-1]
故g(n)=n
=1+1+1/2+1+1/2+1/3+……+1+1/2+1/3+……+1/n
=n+(n-1)/2+(n-2)/3+……+1/n
=n+n/2+n/3+……+n/n-[1/2+2/3+……+(n-1)/n]
=n*(1+1/2+1/3+……+1/n)-(1-1/2+1-1/3+……+1-1/n)
=nf(n)-[n-1-f(n)+1]
=nf(n)+f(n)-n
故f(1)+f(2)+f(3)+……+f(n-1)=nf(n)-n
=n[f(n)-1]
故g(n)=n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询