高一数学题,求详解,一定要详细的!!!一步步来,对于我这种数学渣渣
1.已知α∈(0,π/2),β∈(π/2,π),sin(α+β)=-3/5,cosβ=-5/13,则sinα的值等于________2.函数f(x)=cos2x-6cos...
1.已知α∈(0,π/2),β∈(π/2,π),sin(α+β)=-3/5,cosβ=-5/13,则sinα的值等于________
2.函数f(x)=cos2x-6cosx+1的值域是____________
3.已知π<α<3π/2,sinα=-4/5,求下列格式的值:
(1)(2sin^2α+sin2α)/(cos2α)
(2)tan(α-5π/4) 展开
2.函数f(x)=cos2x-6cosx+1的值域是____________
3.已知π<α<3π/2,sinα=-4/5,求下列格式的值:
(1)(2sin^2α+sin2α)/(cos2α)
(2)tan(α-5π/4) 展开
展开全部
由sinβ=-12/13且β∈(-π/2,0),得cosβ = 5/13
由α∈(π/2,π),β∈(-π/2,0),得2α-β∈(π, 5π/2)
又sin(2α-β) = 3/5 > 0,所以2α-β∈(2π, 5π/2)
sin(2α-β) = sin(2α)cosβ - cos(2α)sinβ = 5/13sin(2α) + 12/13cos(2α) = 3/5
cos(2α-β) = cos(2α)cosβ + sin(2α)sinβ = 5/13cos(2α) - 12/13sin(2α) = 4/5
解得cos(2α) = 56/65
sin²α = (1/2)(1 - cos(2α)) = 9 / 130
sinα = 3/√130
f(x)=(2cos²x-1)-6cosx+1
=2cos²x-6cosx
=2(cosx-3/2)²-9/2
-1<=cosx<=1
所以在这里是递减的
cosx=-1,f(x)=8
cosx=1,f(x)=-4
值域[-4,8]
解:
当π<α<3π/2会有cosa<0
于是cosa=-√【1-sin²a】=-√【1-(-4/5)²】=-3/5
于是tana=sina/cosa=4/3
(1)【2sin²α+sin2α】/cos2α
=【2sin²a+2sinacosa】/【cos²a-sin²a】 分子分母同除cos²a就得下面
=【2sin²a/cos²a+2sina/cosa】/【1-sin²a/cos²a】
=【2tan²a+2tana】/【1-tan²a】
=【2×(4/3)²+2×4/3】/【1-(4/3)²】
=(56/9)/(-7/9)
=-8
(2)tan(α-5π/4)
=tan(a-π/4)
=【tana-tanπ/4】/【1+tanatanπ/4】
=【4/3-1】/【1+4/3×1】
=【1/3】/【7/3】
=1/7
由α∈(π/2,π),β∈(-π/2,0),得2α-β∈(π, 5π/2)
又sin(2α-β) = 3/5 > 0,所以2α-β∈(2π, 5π/2)
sin(2α-β) = sin(2α)cosβ - cos(2α)sinβ = 5/13sin(2α) + 12/13cos(2α) = 3/5
cos(2α-β) = cos(2α)cosβ + sin(2α)sinβ = 5/13cos(2α) - 12/13sin(2α) = 4/5
解得cos(2α) = 56/65
sin²α = (1/2)(1 - cos(2α)) = 9 / 130
sinα = 3/√130
f(x)=(2cos²x-1)-6cosx+1
=2cos²x-6cosx
=2(cosx-3/2)²-9/2
-1<=cosx<=1
所以在这里是递减的
cosx=-1,f(x)=8
cosx=1,f(x)=-4
值域[-4,8]
解:
当π<α<3π/2会有cosa<0
于是cosa=-√【1-sin²a】=-√【1-(-4/5)²】=-3/5
于是tana=sina/cosa=4/3
(1)【2sin²α+sin2α】/cos2α
=【2sin²a+2sinacosa】/【cos²a-sin²a】 分子分母同除cos²a就得下面
=【2sin²a/cos²a+2sina/cosa】/【1-sin²a/cos²a】
=【2tan²a+2tana】/【1-tan²a】
=【2×(4/3)²+2×4/3】/【1-(4/3)²】
=(56/9)/(-7/9)
=-8
(2)tan(α-5π/4)
=tan(a-π/4)
=【tana-tanπ/4】/【1+tanatanπ/4】
=【4/3-1】/【1+4/3×1】
=【1/3】/【7/3】
=1/7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询