展开全部
7. y=e^[-sin²(1/x)],
dy/dx=e^[-sin²(1/x)]
·[-2sin(1/x)·cos(1/x)·(-1/x²)]
={[sin(2/x)]e^[-sin²(1/x)]}/x²;
8. y=√(x+√x),
y'={1/[2√(x+√x)]}·[1+1/(2√x)]
={1/[2√(x+√x)]}·[(1+2√x)/(2√x)]
=(1+2√x)/{4√[x(x+√x)]} .
dy/dx=e^[-sin²(1/x)]
·[-2sin(1/x)·cos(1/x)·(-1/x²)]
={[sin(2/x)]e^[-sin²(1/x)]}/x²;
8. y=√(x+√x),
y'={1/[2√(x+√x)]}·[1+1/(2√x)]
={1/[2√(x+√x)]}·[(1+2√x)/(2√x)]
=(1+2√x)/{4√[x(x+√x)]} .
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
7. y'= [e^(-(sin(1/x))^2)]' = e^[-(sin(1/x))^2] * [-(sin(1/x))^2] '
= e^(-(sin(1/x))^2 * (-2(sin(1/x) )(sin(1/x))'= e^(-(sin(1/x))^2 * (-2(sin(1/x) )cos(1/x)(1/x)'
= e^(-(sin(1/x))^2 * (-2(sin(1/x) )cos(1/x)(-1/x^2)= e^(-(sin(1/x))^2 *sin2x/x^2
8. y'= [(x+x^(1/2))^(1/2)]' = 1/[2(x+x^(1/2))] *[x+x^(1/2)]' = 1/[2(x+x^(1/2))] *[1+1/(2x^(1/2))]
= e^(-(sin(1/x))^2 * (-2(sin(1/x) )(sin(1/x))'= e^(-(sin(1/x))^2 * (-2(sin(1/x) )cos(1/x)(1/x)'
= e^(-(sin(1/x))^2 * (-2(sin(1/x) )cos(1/x)(-1/x^2)= e^(-(sin(1/x))^2 *sin2x/x^2
8. y'= [(x+x^(1/2))^(1/2)]' = 1/[2(x+x^(1/2))] *[x+x^(1/2)]' = 1/[2(x+x^(1/2))] *[1+1/(2x^(1/2))]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-12-30 · 知道合伙人教育行家
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询