已知双曲线x²-y²=1的焦点为F1,F2,点M在双曲线上,且向量MF1*向量MF2=0,求△F1MF2的面积

求完整解题过程,最好还有图!!... 求完整解题过程,最好还有图!! 展开
feidao2010
2013-11-16 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
这个基本不用图,
MF1.MF2=0
即MF1⊥MF2
设MF1=m,MF2=n
利用双曲线定义m-n=2 ①
利用勾股定理,c=√2
m²+n²=(2c)²=8 ②
∴ ②-①²
2mn=4
∴ mn=2
∴ 面积S=(1/2)mn=1
更多追问追答
追问
为什么m-n=2??
追答
这个是双曲线的定义
到两个焦点的距离之差的绝对值是2a,本题是a=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式