在三角形ABC中,求证:(a cosB-b cosA)=a²-b²

晴天雨丝丝
2014-03-27 · TA获得超过1.2万个赞
知道大有可为答主
回答量:1.1万
采纳率:88%
帮助的人:2545万
展开全部
acosB-bcosA=a²-b²
→a(a²+c²-b²)/2ac-b(b²+c²-a²)/2bc=a²-b²
→(a²+c²-b²)-(b²+c²-a²)=2c(a²-b²)
→2a²-2b²=2c(a²-b²)
→2(a²-b²)(c-1)=0.
∴a=b,或c=1.
故△ABC是等腰三角形,或是其中一边为1的任意三角形。
xuzhouliuying
高粉答主

2014-03-27 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
题目应该是抄漏了,acosB、bcosA都少了一个乘积因子c,可能你把c和后面的cos里面的c搞混了,认为只要写一个。应该是ac·cosB-bc·cosA=a²-b²。
证:
由余弦定理得
acosB-bcosA
=a(a²+c²-b²)/(2ac)-b(b²+c²-a²)/(2bc)
=(a²+c²-b²)/(2c)-(b²+c²-a²)/(2c)
=[(a²+c²-b²)-(b²+c²-a²)]/(2c)
=(2a²-2b²)/(2c)
=(a²-b²)/c
ac·cosB-bc·cosA=a²-b²
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
幻紫城风
2014-03-27 · 超过13用户采纳过TA的回答
知道答主
回答量:66
采纳率:0%
帮助的人:32.1万
展开全部
你出的题目有问题,简单的例子,如果是直角三角形,左边acosB-bcosA=a*a/c-b*b/c=(a²-b²)/c,除非c=1,否则不可能出现acosB-bcosA=a²-b² ,而c=1只是一个特例,所以这道题有问题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式