证明题 数学
展开全部
分析:(1)根据平行线的性质以及角平分线的性质即可得出答案,
(2)根据平行线的性质可得出∠OBC=∠BOA,∠OFC=∠FOA,从而得出答案,
(3)根据平行四边形的性质即可得出答案. 解:(1)∵CB∥OA,∠C=∠OAB=120°,
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOF,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB=1/2∠COA=1/2×60°=30° (2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)∵CB∥OA,∠C=∠OAB=120°,
∴∠AOC=∠ABC=60°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=60°÷4=15°,
则∠EOB=2×15°=30°,
此时∠OEC=∠OBA=30°+15°=45°.
(2)根据平行线的性质可得出∠OBC=∠BOA,∠OFC=∠FOA,从而得出答案,
(3)根据平行四边形的性质即可得出答案. 解:(1)∵CB∥OA,∠C=∠OAB=120°,
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOF,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB=1/2∠COA=1/2×60°=30° (2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)∵CB∥OA,∠C=∠OAB=120°,
∴∠AOC=∠ABC=60°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=60°÷4=15°,
则∠EOB=2×15°=30°,
此时∠OEC=∠OBA=30°+15°=45°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.(1) 因为CB∥OA,∠C=∠OAB=100°,所以∠COA=180°-100°=80°,又因为E、F在CB上,∠FOB=∠AOB,OE平分∠COF,所以∠EOB=1/2∠COA=1/2×80°=40°
2.(2)不变,因为CB∥OA,所以∠CBO=∠BOA,又∠FOB=∠AOB,所以∠FOB=∠OBC,而∠FOB+∠OBC=∠OFC,即∠OFC=2∠OBC,所以∠OBC:∠OFC=1:2.
3.(3)存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.理由如下:因为 ∠COE+∠CEO+∠C=180°,∠BOA+∠OAB+∠ABO=180°,且∠OEC=∠OBA,∠C=∠OAB=100°,所以∠COE =∠BOA,又因为∠FOB=∠AOB,OE平分∠COF,所以∠BOA=∠BOF=∠FOE=∠EOC=∠COA=20°,所以∠OEC=∠OBA=60°
2.(2)不变,因为CB∥OA,所以∠CBO=∠BOA,又∠FOB=∠AOB,所以∠FOB=∠OBC,而∠FOB+∠OBC=∠OFC,即∠OFC=2∠OBC,所以∠OBC:∠OFC=1:2.
3.(3)存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.理由如下:因为 ∠COE+∠CEO+∠C=180°,∠BOA+∠OAB+∠ABO=180°,且∠OEC=∠OBA,∠C=∠OAB=100°,所以∠COE =∠BOA,又因为∠FOB=∠AOB,OE平分∠COF,所以∠BOA=∠BOF=∠FOE=∠EOC=∠COA=20°,所以∠OEC=∠OBA=60°
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解(1)∵CB∥OA,∠C=∠OAB=120°,
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= ∠COA= ×60°=30°;
(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)存在,
∵CB∥OA,∠C=∠OAB=120°,
∴∠AOC=∠ABC=60°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=60°/4=15°,
则∠EOB=2×15°=30°,
此时∠OEC=∠OBA=30°+15°=45°.
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= ∠COA= ×60°=30°;
(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)存在,
∵CB∥OA,∠C=∠OAB=120°,
∴∠AOC=∠ABC=60°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=60°/4=15°,
则∠EOB=2×15°=30°,
此时∠OEC=∠OBA=30°+15°=45°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询