大学数学-极限求证2

要的是详细的求证过程,在下感激不尽,分不多,谢了... 要的是详细的求证过程,在下感激不尽,分不多,谢了 展开
leil111
2010-09-11 · TA获得超过8770个赞
知道大有可为答主
回答量:1744
采纳率:100%
帮助的人:964万
展开全部
设max{a1,a2...an}=ai
那么原式就是
ai*(n->无穷)lim[(a1/ai)^n+(a2/ai)^n+...+(an/ai)^n]^(1/n)
因为ai是a1,a2...an中最大的数,所以(a1/ai)^n=0或1
1≤(a1/ai)^n+(a2/ai)^n+...+(an/ai)^n≤n
利用夹逼准则可知
(n->无穷)lim[(a1/ai)^n+(a2/ai)^n+...+(an/ai)^n]^(1/n)=1
所以原式=ai
百度网友8d8acae
2010-09-11 · TA获得超过6503个赞
知道大有可为答主
回答量:1637
采纳率:100%
帮助的人:882万
展开全部
【首先,要用到极限:lim(n->∞) n^(1/n) =1 ,其次a1,a2,...,am是给定的m个正数,本题题目应为:】
令:a=max{a1,a2,...,am},则:

a=(a^n)^(1/n) (a1^n + a2^n + ...+ am^n)^(1/n) ≤ (n*a^n)^(1/n)=a*n^(1/n)
∵ lim(n->∞) a*n^(1/n) =1 ,lim(n->∞) a =a
∴ 由夹逼定理有:
lim(n->∞) (a1^n + a2^n + ...+ am^n)^(1/n)
=a
=max{a1,a2,...,am}
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
oicq414123
2010-09-11 · TA获得超过866个赞
知道答主
回答量:295
采纳率:0%
帮助的人:166万
展开全部
给个提示吧
lim n次根号下max<原式<lim n次根号下n*max
lim n次根号下n=1
太难写了 指能这样了 希望你能看懂
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
37...6@qq.com
2010-09-11 · TA获得超过109个赞
知道答主
回答量:114
采纳率:100%
帮助的人:94.9万
展开全部

见图

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式