已知集合A={x||x-a|=4},集合B={1,2,b}
(1)是否存在实数a的值,使得对于任意实数b都有A含于B?(2)若A含于B成立,求出对应的实数对(a,b)...
(1)是否存在实数a的值,使得对于任意实数b都有A含于B?
(2)若A含于B成立,求出对应的实数对(a,b) 展开
(2)若A含于B成立,求出对应的实数对(a,b) 展开
展开全部
答:
集合A,|x-a|=4,则x-a=4或者x-a=-4;x=a+4或者x=a-4
集合B={1,2,b},元素具有互异性,则b≠1并且b≠2
1)
对于任意实数b都有A包含于B,
则A中的元素不能与b相等。
所以:
x=a+4=1
x=a-4=2
无解
或者:
x=a+4=2
x=a-4=1
无解
所以:不存在满足题意的a值
或者说,集合A中的元素差值=(a+4)-(a-4)=8
而集合B中的元素差值=2-1=1
所以:不存在满足题意的a
2)
从1)知道,集合A中的元素必定有一个与b相等
所以:
a+4=1
a-4=b
或者:
a+4=2
a-4=b
或者:
a-4=1
a+4=b
或者:
a-4=2
a+4=b
解以上4个方程组得:
a=-3,b=-7
a=-2,b=-6
a=5,b=9
a=6,b=10
综上所述,元素对(a,b)为:
(-3,-7)、(-2,-6)、(5,9)、(6,10)
集合A,|x-a|=4,则x-a=4或者x-a=-4;x=a+4或者x=a-4
集合B={1,2,b},元素具有互异性,则b≠1并且b≠2
1)
对于任意实数b都有A包含于B,
则A中的元素不能与b相等。
所以:
x=a+4=1
x=a-4=2
无解
或者:
x=a+4=2
x=a-4=1
无解
所以:不存在满足题意的a值
或者说,集合A中的元素差值=(a+4)-(a-4)=8
而集合B中的元素差值=2-1=1
所以:不存在满足题意的a
2)
从1)知道,集合A中的元素必定有一个与b相等
所以:
a+4=1
a-4=b
或者:
a+4=2
a-4=b
或者:
a-4=1
a+4=b
或者:
a-4=2
a+4=b
解以上4个方程组得:
a=-3,b=-7
a=-2,b=-6
a=5,b=9
a=6,b=10
综上所述,元素对(a,b)为:
(-3,-7)、(-2,-6)、(5,9)、(6,10)
展开全部
解答:(1)对任意的实数b都有A⊆B,则当且仅当1、2也是A中的元素,解集前面打上大括号。
∵A={a-4,a+4},∴
a−4=1
a+4=2
或
a−4=2
a+4=1
这都不可能,∴这样的实数a不存在.
(2)由(1)易知欲A⊆B,当且仅当
a−4=1
a+4=b
或
a−4=2
a+4=b
或
a−4=b
a+4=1
或
a−4=b
a+4=2
解得
a=5
b=9
或
a=6
b=10
或
a=−3
b=−7
或
a=−2
b=−6
在
∵A={a-4,a+4},∴
a−4=1
a+4=2
或
a−4=2
a+4=1
这都不可能,∴这样的实数a不存在.
(2)由(1)易知欲A⊆B,当且仅当
a−4=1
a+4=b
或
a−4=2
a+4=b
或
a−4=b
a+4=1
或
a−4=b
a+4=2
解得
a=5
b=9
或
a=6
b=10
或
a=−3
b=−7
或
a=−2
b=−6
在
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询