数学中排列问题。
排列是指将一组数字或字母按照固定的顺序进行排列,其强调的的是位置不能颠倒,不能互换。组合则没有这个强调,位置可以任意互换,颠倒。然而在掷骰子的游戏中,我搞不懂了。在随机掷...
排列是指将一组数字或字母按照固定的顺序进行排列,其强调的的是位置不能颠倒,不能互换。组合则没有这个强调,位置可以任意互换,颠倒。
然而在掷骰子的游戏中,我搞不懂了。在随机掷两个骰子比较大小的时候,应用排列写作C72(7下2上),所得答案是42,为什么排列自动将,11,22,33,44,55 ,66,77等排列方式排除了?否则应该有49种答案啊
卧槽,忽然顿悟了。。 展开
然而在掷骰子的游戏中,我搞不懂了。在随机掷两个骰子比较大小的时候,应用排列写作C72(7下2上),所得答案是42,为什么排列自动将,11,22,33,44,55 ,66,77等排列方式排除了?否则应该有49种答案啊
卧槽,忽然顿悟了。。 展开
展开全部
排 列
课题:排列的简单应用(2)
目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解.
过程:
一、复习:
1.排列、排列数的定义,排列数的两个计算公式;
2.常见的排队的三种题型:
⑴某些元素不能在或必须排列在某一位置——优限法;
⑵某些元素要求连排(即必须相邻)——捆绑法;
⑶某些元素要求分离(即不能相邻)——插空法.
3.分类、分布思想的应用.
二、新授:
示例一: 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
解法一:(从特殊位置考虑)
解法二:(从特殊元素考虑)若选: 若不选:
则共有 + =136080
解法三:(间接法) 136080
示例二:
⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,
则共有多少种不同的排法?
略解:甲、乙排在前排 ;丙排在后排 ;其余进行全排列 .
所以一共有 =5760种方法.
⑵ 不同的五种商品在货架上排成一排,其中a, b两种商品必须排在一起,而c, d两种商品不排在一起, 则不同的排法共有多少种?
略解:(“捆绑法”和“插空法”的综合应用)a, b捆在一起与e进行排列有 ;
此时留下三个空,将c, d两种商品排进去一共有 ;最后将a, b“松绑”有 .所以一共有 =24种方法.
☆⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?
略解:(分类)若第一个为老师则有 ;若第一个为学生则有
所以一共有2 =72种方法.
示例三:
⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?
略解:
⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?
解法一:分成两类,一类是首位为1时,十位必须大于等于3有 种方法;另一类是首位不为1,有 种方法.所以一共有 个数比13 000大.
解法二:(排除法)比13 000小的正整数有 个,所以比13 000大的正整数有 =114个.
示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列.
⑴ 第114个数是多少? ⑵ 3 796是第几个数?
解:⑴ 因为千位数是1的四位数一共有 个,所以第114个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有 个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数.
⑵ 由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数.
示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中
⑴ 能被25整除的数有多少个?
⑵ 十位数字比个位数字大的有多少个?
解: ⑴ 能被25整除的四位数的末两位只能为25,50两种,末尾为50的四位数有 个,末尾为25的有 个,所以一共有 + =21个.
注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况.
⑵ 用0,1,2,3,4,5组成无重复数字的四位数,一共有 个.因为在这300个数中,十位数字与个位数字的大小关系是“等可能的”,所以十位数字比个位数字大的有 个.
三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性.
四、作业:“3+X”之 排列 练习
组 合
课题:组合、组合数的综合应用⑵
目的:对排列组合知识有一个系统的了解,掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题.
过程:
一、知识复习:
1.两个基本原理;
2.排列和组合的有关概念及相关性质.
二、例题评讲:
例1.6本不同的书,按下列要求各有多少种不同的选法:
⑴ 分给甲、乙、丙三人,每人两本;
⑵ 分为三份,每份两本;
⑶ 分为三份,一份一本,一份两本,一份三本;
⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本;
⑸ 分给甲、乙、丙三人,每人至少一本.
解:⑴ 根据分步计数原理得到: 种.
⑵ 分给甲、乙、丙三人,每人两本有 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有 种方法.根据分步计数原理可得: ,所以 .因此分为三份,每份两本一共有15种方法.
注:本题是分组中的“均匀分组”问题.
⑶ 这是“不均匀分组”问题,一共有 种方法.
⑷ 在⑶的基础上在进行全排列,所以一共有 种方法.
⑸ 可以分为三类情况:①“2、2、2型”即⑴中的分配情况,有 种方法;②“1、2、3型”即⑷中的分配情况,有 种方法;③“1、1、4型”,有 种方法.所以一共有90+360+90=540种方法.
例2.身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?
解:(插空法)现将其余4个同学进行全排列一共有 种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有 种方法.根据分步计数原理,一共有 =240种方法.
例3.⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?
⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?
解:⑴ 根据分步计数原理:一共有 种方法.
⑵(捆绑法)第一步从四个不同的小球中任取两个“捆绑”在一起看成一个元素有 种方法,第二步从四个不同的盒取其中的三个将球放入有 种方法.所以一共有 =144种方法.
例4.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?
解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为 种方法.
例5.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?
解:可以分为两类情况:① 若取出6,则有 种方法;②若不取6,则有 种方法.根据分类计数原理,一共有 + =602种方法.
满意请采纳。
课题:排列的简单应用(2)
目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解.
过程:
一、复习:
1.排列、排列数的定义,排列数的两个计算公式;
2.常见的排队的三种题型:
⑴某些元素不能在或必须排列在某一位置——优限法;
⑵某些元素要求连排(即必须相邻)——捆绑法;
⑶某些元素要求分离(即不能相邻)——插空法.
3.分类、分布思想的应用.
二、新授:
示例一: 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
解法一:(从特殊位置考虑)
解法二:(从特殊元素考虑)若选: 若不选:
则共有 + =136080
解法三:(间接法) 136080
示例二:
⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,
则共有多少种不同的排法?
略解:甲、乙排在前排 ;丙排在后排 ;其余进行全排列 .
所以一共有 =5760种方法.
⑵ 不同的五种商品在货架上排成一排,其中a, b两种商品必须排在一起,而c, d两种商品不排在一起, 则不同的排法共有多少种?
略解:(“捆绑法”和“插空法”的综合应用)a, b捆在一起与e进行排列有 ;
此时留下三个空,将c, d两种商品排进去一共有 ;最后将a, b“松绑”有 .所以一共有 =24种方法.
☆⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?
略解:(分类)若第一个为老师则有 ;若第一个为学生则有
所以一共有2 =72种方法.
示例三:
⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?
略解:
⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?
解法一:分成两类,一类是首位为1时,十位必须大于等于3有 种方法;另一类是首位不为1,有 种方法.所以一共有 个数比13 000大.
解法二:(排除法)比13 000小的正整数有 个,所以比13 000大的正整数有 =114个.
示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列.
⑴ 第114个数是多少? ⑵ 3 796是第几个数?
解:⑴ 因为千位数是1的四位数一共有 个,所以第114个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有 个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数.
⑵ 由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数.
示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中
⑴ 能被25整除的数有多少个?
⑵ 十位数字比个位数字大的有多少个?
解: ⑴ 能被25整除的四位数的末两位只能为25,50两种,末尾为50的四位数有 个,末尾为25的有 个,所以一共有 + =21个.
注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况.
⑵ 用0,1,2,3,4,5组成无重复数字的四位数,一共有 个.因为在这300个数中,十位数字与个位数字的大小关系是“等可能的”,所以十位数字比个位数字大的有 个.
三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性.
四、作业:“3+X”之 排列 练习
组 合
课题:组合、组合数的综合应用⑵
目的:对排列组合知识有一个系统的了解,掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题.
过程:
一、知识复习:
1.两个基本原理;
2.排列和组合的有关概念及相关性质.
二、例题评讲:
例1.6本不同的书,按下列要求各有多少种不同的选法:
⑴ 分给甲、乙、丙三人,每人两本;
⑵ 分为三份,每份两本;
⑶ 分为三份,一份一本,一份两本,一份三本;
⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本;
⑸ 分给甲、乙、丙三人,每人至少一本.
解:⑴ 根据分步计数原理得到: 种.
⑵ 分给甲、乙、丙三人,每人两本有 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有 种方法.根据分步计数原理可得: ,所以 .因此分为三份,每份两本一共有15种方法.
注:本题是分组中的“均匀分组”问题.
⑶ 这是“不均匀分组”问题,一共有 种方法.
⑷ 在⑶的基础上在进行全排列,所以一共有 种方法.
⑸ 可以分为三类情况:①“2、2、2型”即⑴中的分配情况,有 种方法;②“1、2、3型”即⑷中的分配情况,有 种方法;③“1、1、4型”,有 种方法.所以一共有90+360+90=540种方法.
例2.身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?
解:(插空法)现将其余4个同学进行全排列一共有 种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有 种方法.根据分步计数原理,一共有 =240种方法.
例3.⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?
⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?
解:⑴ 根据分步计数原理:一共有 种方法.
⑵(捆绑法)第一步从四个不同的小球中任取两个“捆绑”在一起看成一个元素有 种方法,第二步从四个不同的盒取其中的三个将球放入有 种方法.所以一共有 =144种方法.
例4.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?
解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为 种方法.
例5.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?
解:可以分为两类情况:① 若取出6,则有 种方法;②若不取6,则有 种方法.根据分类计数原理,一共有 + =602种方法.
满意请采纳。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询