若不等式(1/n+1)+(1/n+2)+...+(1/2n)>(m/72)对一切大于1的自然数n都成立,求整数m的最大值.

诚实还恩爱丶白桦S
2010-09-11 · TA获得超过2288个赞
知道小有建树答主
回答量:504
采纳率:0%
帮助的人:309万
展开全部
记An=1/(n+1)+1/(n+2)+...+1/(2n),n>=2.
A(n+1)=1/(n+2)+1/(n+3)+...+1/(2n)+1/(2n+1)+1/(2(n+1)),
A(n+1)-An=1/(2n+1)+1/(2(n+1))-1/(n+1)=1/(2n+1)-1/(2(n+1))>0,
即An是严格增的序列。
依题意,m/72<A2<A3<A4<...
由m/72<A2=7/12==>m<42.
故整数m的最大值为41.

为什么同一题开两次帖子??
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式