已知集合A={(x,y)|x²+mx-y+2=0,x∈R},B={(x,y)|x-y+1=0,0≤
已知集合A={(x,y)|x²+mx-y+2=0,x∈R},B={(x,y)|x-y+1=0,0≤x≤2}。若A∩B≠空集,求m的取值范围...
已知集合A={(x,y)|x²+mx-y+2=0,x∈R},B={(x,y)|x-y+1=0,0≤x≤2}。若A∩B≠空集,求m的取值范围
展开
1个回答
展开全部
由题知,
集合A={(x,y)|x²+mx-y+2=0,x∈R},
集合B={(x,y)|x-y+1=0,0≤x≤2}
若A∩B≠空集
即方程组
x²+mx-y+2=0
x-y+1=0
在x∈[0,2]有公共解
两式相减,约去y得
x²+(m-1)x+1=0
要使方程在x∈[0,2]有解
首先要满足
判别式⊿=(m-1)²-4≥0
对称轴-(m-1)/2>0
所以,此时m≤-1
所以,令f(x)=x²+(m-1)x+1
f(0)=1>0
f(1)=1+m-1+1=1+m≤0
在x²+(m-1)x+1=0必有一根在[0,1]之间
所以,m≤-1
即m∈(-∞,-1]
集合A={(x,y)|x²+mx-y+2=0,x∈R},
集合B={(x,y)|x-y+1=0,0≤x≤2}
若A∩B≠空集
即方程组
x²+mx-y+2=0
x-y+1=0
在x∈[0,2]有公共解
两式相减,约去y得
x²+(m-1)x+1=0
要使方程在x∈[0,2]有解
首先要满足
判别式⊿=(m-1)²-4≥0
对称轴-(m-1)/2>0
所以,此时m≤-1
所以,令f(x)=x²+(m-1)x+1
f(0)=1>0
f(1)=1+m-1+1=1+m≤0
在x²+(m-1)x+1=0必有一根在[0,1]之间
所以,m≤-1
即m∈(-∞,-1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |