设集合A是包含3个元素的集合,则在A上可以定义_____种二元关系,其中满足对称性的有___种,求详细解答!

爱迪奥特曼_开
推荐于2016-08-31 · TA获得超过1830个赞
知道小有建树答主
回答量:766
采纳率:80%
帮助的人:360万
展开全部
由题意,设集合 A={a,b,c} ,
集合A中可定义的二元组有
(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a),(b,c),(c,b) 共9个;
那么,以二元关系中的个数来分类,可分为9类;
A上的二元关系一共有:
C(9,1)+C(9,2)+C(9,3)+......+C(9,9)=9+36+84+126+126+84+36+9+1=511
所以A上可定义511种二元关系;
满足对称性就是:如果(m,n)在关系中,那么(n,m)也在关系中;
同样以二元关系中的个数来分类,满足对称性的共有:
3+6+10+12+12+9+6+3+1=62
所以满足对称性的有62种。
综上所述,A上可定义511种二元关系,其中满足对称性的有62种。
希望对你有用~
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式