f(x)在【0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明:g(x)=f(x)/x在

 我来答
茹翊神谕者

2021-09-22 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1644万
展开全部

简单计算一下即可,答案如图所示

闫染翦姬
2019-12-20 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:823万
展开全部
∵f(x)的导数单调递增
∴f‘’(x)>0
g'(x)=[xf‘(x)-f(x)]/(x^2)
令F(x)=xf‘(x)-f(x)
则F'(x)=f‘(x)+xf‘'(x)-f'(x)=xf‘'(x)
在(0,+无穷)上F'(x)=xf‘'(x)>0
所以F(x)单调递增
所以F(x)>F(0)=0
在(0,+无穷)上,x^2>0
所以g'(x)=F(x)/(x^2)>0
所以g(x)=f(x)/x在(0,+无穷)上单调递增
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式