如何解一元四次方程x^4+2x^3+9-18x=0 5
展开全部
给你几个解法
费拉里法
费拉里的方法是这样的: 方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方, 方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2-e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。 特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+y)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。 解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 不幸的是,就象塔塔利亚发现的一元三次方程求根公式被误称为卡当公式一样,费拉里发现的一元四次方程求解方法也曾被误认为是波培拉发现的
笛卡尔法
一般的四次方程还可以待定系数法解,这种方法称为笛卡尔法,由笛卡尔于1637年提出。 先将四次方程化为x^4+ax^3+bx^2+cx+d=0的形式。 令x=y-a/4,整理后得到y^4+py^2+qy+r=0 (1) 设y^4+py^2+qy+r=(y^2+ky+t)(y^2-ky+m)=y^4+(t+m-k^2)y^2+k(m-t)y+tm 比较dy对应项系数,得t+m-k^2=p,k(m-t)=q,tm=r 设k≠0,把t和m当作未知数,解前两个方程,得t=(k^3+pk-q)/(2k),m=(k^3+pk+q)/(2k) 再代入第三个方程,得((k^3+pk)^2-q^2)/(4k^2)=r 。即k^6+2pk^4+(p^2-4r)k^2-q^2=0 解这个方程,设kο是它的任意一根,tο和mο是k=ko时t和m的值那么方程(1)就成为 (y^2+koy+to)(y^2-koy+mo)=0 解方程y^2+koy+to=0和y^2-koy+mo=0就可以得出方程(1)的四个根,各根加上-4/a就可以得出原方程的四个根。
方程为 x^4+b·x^3+c·x^2+d·x+e=0 如果设 P=bd-4e-c²/3 Q=bcd/27+(104/27)·ce-(2/27)·c³-b²e-d² D=-4·P³-27·Q³ u=³√(-13.5·Q+3/2·√(-3D)) v=³√(-13.5·Q-3/2·√(-3D)) y=(u+v-3)/3 N=(1/4)b²+(1/4)·b-c+y-2y²+4·√{(1/4)·y²-e}-b·√{(1/4)·y²-c+y} M=(1/4)b²+(1/4)·b-c+y-2y²-4·√{(1/4)·y²-e}+b·√{(1/4)·y²-c+y} 则 X1=(1/2)·√((1/4)·b-c+y)-(1/4)·b+(1/2)·√N X2=(1/2)·√((1/4)·b-c+y)+(1/4)·b+(1/2)·√N X3=-(1/2)·√((1/4)·b-c+y)-(1/4)·b+(1/2)·√N X4=-(1/2)·√((1/4)·b-c+y)+(1/4)·b+(1/2)·√N
费拉里法
费拉里的方法是这样的: 方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方, 方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2-e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。 特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+y)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。 解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 不幸的是,就象塔塔利亚发现的一元三次方程求根公式被误称为卡当公式一样,费拉里发现的一元四次方程求解方法也曾被误认为是波培拉发现的
笛卡尔法
一般的四次方程还可以待定系数法解,这种方法称为笛卡尔法,由笛卡尔于1637年提出。 先将四次方程化为x^4+ax^3+bx^2+cx+d=0的形式。 令x=y-a/4,整理后得到y^4+py^2+qy+r=0 (1) 设y^4+py^2+qy+r=(y^2+ky+t)(y^2-ky+m)=y^4+(t+m-k^2)y^2+k(m-t)y+tm 比较dy对应项系数,得t+m-k^2=p,k(m-t)=q,tm=r 设k≠0,把t和m当作未知数,解前两个方程,得t=(k^3+pk-q)/(2k),m=(k^3+pk+q)/(2k) 再代入第三个方程,得((k^3+pk)^2-q^2)/(4k^2)=r 。即k^6+2pk^4+(p^2-4r)k^2-q^2=0 解这个方程,设kο是它的任意一根,tο和mο是k=ko时t和m的值那么方程(1)就成为 (y^2+koy+to)(y^2-koy+mo)=0 解方程y^2+koy+to=0和y^2-koy+mo=0就可以得出方程(1)的四个根,各根加上-4/a就可以得出原方程的四个根。
方程为 x^4+b·x^3+c·x^2+d·x+e=0 如果设 P=bd-4e-c²/3 Q=bcd/27+(104/27)·ce-(2/27)·c³-b²e-d² D=-4·P³-27·Q³ u=³√(-13.5·Q+3/2·√(-3D)) v=³√(-13.5·Q-3/2·√(-3D)) y=(u+v-3)/3 N=(1/4)b²+(1/4)·b-c+y-2y²+4·√{(1/4)·y²-e}-b·√{(1/4)·y²-c+y} M=(1/4)b²+(1/4)·b-c+y-2y²-4·√{(1/4)·y²-e}+b·√{(1/4)·y²-c+y} 则 X1=(1/2)·√((1/4)·b-c+y)-(1/4)·b+(1/2)·√N X2=(1/2)·√((1/4)·b-c+y)+(1/4)·b+(1/2)·√N X3=-(1/2)·√((1/4)·b-c+y)-(1/4)·b+(1/2)·√N X4=-(1/2)·√((1/4)·b-c+y)+(1/4)·b+(1/2)·√N
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
短路计算的条件主要包括以下几点:1. 假设系统有无限大的容量,即系统容量无限大。2. 用户处短路后,系统母线电压能维持不变,即计算阻抗比系统阻抗要大得多。3. 在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询