已知函数f(x)=2(cosx)^2+2√3sinxcosx,(1)求函数f(x)在[-π/6,π/3]上的值域

 我来答
宫义宰碧
2020-01-08 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:32%
帮助的人:658万
展开全部
1.
f(x)=2(cosx)^2+2√3sinxcosx
=cos2x+1+√3sin2x
=2sin(2x+π/6)+1
=2sin(2(x+π/12))+1
[-π/6,π/3]上,
f(-π/6)=2*(-1/2)+1=0
f(π/3)=2*sin(5π/6)+1=2
f(x)最大=f(π/6)=2+1=3
f(x)在[-π/6,π/3]上的值域:[0,3]
2.
f(C)=2
2sin(2(C+π/12))+1=2
sin(2(C+π/12))=1/2
2(C+π/12)=π/6,
或2(C+π/12)=5π/6
C=0(舍弃),或C=π/3
2sinB=cos(A-C)-cos(A+C)
2sinB=-2sinAsin(-C)
sinB=sinAsinC
sin(A+C)=√3/2
sinA
sinA*1/2+cosA)*√3/2=√3/2
sinA
tanA=sinA/cosA=√3/(√3-1)=(3+√3)/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式