已知O为三角形ABC内一点,且向量OA+向量OB+向量OC=0,求证:O点为三角形ABC的重心
展开全部
证明:作图,过B作BE平行OC且BE等于OC ,OE连接交BC于F OB+OC=OB+BE=OE
因 BE平行且等于OC 所 BOCE为平行四边行 所 F为OE中点 OF=1/2OE 因OA+OB+OC=0 所OB+OC=AO=OE 所OF=1/2AO F为BC中点 所 O为三角形ABC重心
因 BE平行且等于OC 所 BOCE为平行四边行 所 F为OE中点 OF=1/2OE 因OA+OB+OC=0 所OB+OC=AO=OE 所OF=1/2AO F为BC中点 所 O为三角形ABC重心
更多追问追答
追问
很满意,,谢啦
已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC),则动点P一定是三角形ABC的什么
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询