分析如下:
就是第一行 第一列 还有对角线上都是数字 其他地方全是0的行列式计算是从第二列开始乘以某些倍数使得第一列对应的元素为0 比如第二列乘以一个数使第一列的第二个元素为0,第三列乘以一个数使得第一列的第三个为0,每列都这样做化成三角行列式。
求行列式Dn, 其中a1a2a3...an不等于0
1+a1 1 ... 1
1 1+a2 ... 1
... ...
1 1 ... 1+an
第1行乘 -1 加到其余各行 得
1+a1 1 ... 1
-a1 a2 ... 0
... ...
-a1 0 ... an
这就是爪形行列式
计算方法是利用2到n列主对角线上的非零元将其同行的第1列的元素化成0
第k列提出ak,k=1,2,...,n (注意ai不等于0) 得 a1a2a3...an*
1+1/a1 1/a2 ... 1/an
-1 1 ... 0
... ...
-1 0 ... 1
第2到n列加到第1列, 得一上三角行列式
1+1/a1 1/a2 ... 1/an
0 1 ... 0
... ...
0 0 ... 1
行列式 = a1a2a3...an( 1+ 1/a1+2/a2+...+1/an) = ∏ai(1+∑1/ai)
扩展资料:
n阶行列式
设
是由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和
式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那末数D称为n阶方阵相应的行列式.例如,四阶行列式是4!个形为
的项的和,而其中a13a21a34a42相应于k=3,即该项前端的符号应为
(-1)3.
若n阶方阵A=(aij),则A相应的行列式D记作
D=|A|=detA=det(aij)
若矩阵A相应的行列式D=0,称A为奇异矩阵,否则称为非奇异矩阵.
标号集:序列1,2,...,n中任取k个元素i1,i2,...,ik满足
1≤i1<i2<...<ik≤n(1)
i1,i2,...,ik构成{1,2,...,n}的一个具有k个元素的子列,{1,2,...,n}的具有k个元素的满足(1)的子列的全体记作C(n,k),显然C(n,k)共有 个子列.因此C(n,k)是一个具有个元素的标号集(参见第二十一章,1,二),C(n,k)的元素记作σ,τ,...,σ∈C(n,k)表示
σ={i1,i2,...,ik}是{1,2,...,n}的满足(1)的一个子列.若令τ={j1,j2,...,jk}∈C(n,k),则σ=τ表示i1=j1,i2=j2,...,ik=jk。
“参考资料:百度百科:行列式”
2024-06-27 广告