方程式怎么算
13个回答
2014-11-01
展开全部
一元二次方程的解法
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视。
一元二次方程的一般形式为:ax2 bx c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解
法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x 1)2=7 (2)9x2-24x 16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x 1)2=7×
∴(3x 1)2=5
∴3x 1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x 16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2 bx c=0 (a≠0)
先将常数c移到方程右边:ax2 bx=-c
将二次项系数化为1:x2 x=-
方程两边分别加上一次项系数的一半的平方:x2 x ( )2=- ( )2
方程左边成为一个完全平方式:(x )2=
当b2-4ac≥0时,x =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x ( )2= ( )2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项
系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
热心网友 | 2013-10-27
1
0
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视。
一元二次方程的一般形式为:ax2 bx c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解
法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x 1)2=7 (2)9x2-24x 16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x 1)2=7×
∴(3x 1)2=5
∴3x 1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x 16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2 bx c=0 (a≠0)
先将常数c移到方程右边:ax2 bx=-c
将二次项系数化为1:x2 x=-
方程两边分别加上一次项系数的一半的平方:x2 x ( )2=- ( )2
方程左边成为一个完全平方式:(x )2=
当b2-4ac≥0时,x =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x ( )2= ( )2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项
系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
热心网友 | 2013-10-27
1
0
更多追问追答
追答
最近没被采纳。求采纳
追问
我说的是化学 不是数学
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |