设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2、再设z1,z2在复平面内的对应点是Z1,Z2,求以

设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2、再设z1,z2在复平面内的对应点是Z1,Z2,求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.... 设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2、再设z1,z2在复平面内的对应点是Z1,Z2,求以Z1,Z2为焦点且经过原点的椭圆的长轴的长. 展开
 我来答
韶昳02S
2014-11-11 · TA获得超过107个赞
知道答主
回答量:116
采纳率:0%
帮助的人:141万
展开全部
因为p,q为实数,p≠0,z1,z2为虚数,
所以(-2p)2-4q<0,q>p2>0
由z1,z2为共轭复数,知Z1,Z2关于x轴对称,
所以椭圆短轴在x轴上,又由椭圆经过原点,
可知原点为椭圆短轴的一端点
根据椭圆的性质,复数加,减法几何意义及一元二次方程根与系数的关系,
可得椭圆的短轴长=2b=|z1+z2|=2|p|,
焦距离=2c=|z1-z2|=
|(z1+z2)2?4z1z2|
=2
q?p2

长轴长=2a=2
b2+c2
=2
q
.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式