如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.(1)求证:AB∥平面PCD(2)...
如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.(1)求证:AB∥平面PCD(2)求证:BC⊥平面PAC(3)求二面角A-PC-D的平面角a的正弦值.
展开
1个回答
展开全部
(1)证明:如图,
∵AB∥DC,且AB?平面PCD,DC?平面PCD.
∴AB∥平面PCD;
(2)证明:在直角梯形ABCD中,过C作CE⊥AB于点E,则四边形ADCE为矩形.
∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠ABC=45°,
∴CE=BE=1,CB=
.
∴AD=CE=1,
则AC=
=
,AC2+BC2=AB2.
∴BC⊥AC.
又∵PA⊥平面,∴PA⊥BC,
又PA∩AC=A.
所以BC⊥平面PAC.
(3)解:以A为坐标原点,分别以AD,AB,AP所在直线为x,y,z轴建立空间直角坐标系,
则A(0,0,0),P(0,0,1),C(1,1,0),D(1,0,0).
∴
=(0,0,1),
=(1,1,?1),
=(1,0,?1).
设
=(a,b,c)为平面PAC的一个法向量,
由
∵AB∥DC,且AB?平面PCD,DC?平面PCD.
∴AB∥平面PCD;
(2)证明:在直角梯形ABCD中,过C作CE⊥AB于点E,则四边形ADCE为矩形.
∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠ABC=45°,
∴CE=BE=1,CB=
2 |
∴AD=CE=1,
则AC=
AD2+DC2 |
2 |
∴BC⊥AC.
又∵PA⊥平面,∴PA⊥BC,
又PA∩AC=A.
所以BC⊥平面PAC.
(3)解:以A为坐标原点,分别以AD,AB,AP所在直线为x,y,z轴建立空间直角坐标系,
则A(0,0,0),P(0,0,1),C(1,1,0),D(1,0,0).
∴
AP |
PC |
PD |
设
m |
由
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|