高中数学,谢谢,求过程!
2个回答
展开全部
tan92=-tan88,(tan52-tan88)/(1+tan58tan88)=tan-30
2.原式=tan(2θ-θ)=tanθ
3因为(tan83+tan37)/(1-tan83tan37)=tan120=-根号3所以tan83+tan37=-(1-tan83tan37)×根号3=根号3*tan83tan37-根号3,所以原式=-根号3
4(cos(45-30)-sin(45-30))/[cos(45-30)+sin(45-30)]化简后得sin45sin30/cos45cos30=三分之根号三
2.原式=tan(2θ-θ)=tanθ
3因为(tan83+tan37)/(1-tan83tan37)=tan120=-根号3所以tan83+tan37=-(1-tan83tan37)×根号3=根号3*tan83tan37-根号3,所以原式=-根号3
4(cos(45-30)-sin(45-30))/[cos(45-30)+sin(45-30)]化简后得sin45sin30/cos45cos30=三分之根号三
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
(tan58°+tan92°)/(1+tan58°tan88°)
= (tan58°-tan88°)/(1+tan58°tan88°)
= tan(58°-88°)
= tan(-30°)
= -tan30°
= -√3/3
(2)
(tan2θ-tanθ)/(1+tan2θtanθ)
= tan(2θ-θ)
= tanθ
(3)
∵ tan120°= tan(83°+37)= (tan83°+tan37°)/(1-tan83°tan37°)= -√3
∴ tan83°+tan37°= -√3+√3*tan83°tan37°
∴ tan83°+tan37°-√3*tan83°tan37°= -√3
(4)
(cos15°-sin15°)/(cos15°+sin15°)
= (cos15°-sin15°)(cos15°-sin15°)/(cos15°+sin15°)(cos15°-sin15°)
= (cos^2 15°-2sin15°cos15°+sin^2 15°)/【(cos15°)^2-(sin15°)^2】
= (1-sin30°)/cos30°
= (1-1/2)/(√3/2)
= √3/3
希望你能采纳,不懂可追问。
(tan58°+tan92°)/(1+tan58°tan88°)
= (tan58°-tan88°)/(1+tan58°tan88°)
= tan(58°-88°)
= tan(-30°)
= -tan30°
= -√3/3
(2)
(tan2θ-tanθ)/(1+tan2θtanθ)
= tan(2θ-θ)
= tanθ
(3)
∵ tan120°= tan(83°+37)= (tan83°+tan37°)/(1-tan83°tan37°)= -√3
∴ tan83°+tan37°= -√3+√3*tan83°tan37°
∴ tan83°+tan37°-√3*tan83°tan37°= -√3
(4)
(cos15°-sin15°)/(cos15°+sin15°)
= (cos15°-sin15°)(cos15°-sin15°)/(cos15°+sin15°)(cos15°-sin15°)
= (cos^2 15°-2sin15°cos15°+sin^2 15°)/【(cos15°)^2-(sin15°)^2】
= (1-sin30°)/cos30°
= (1-1/2)/(√3/2)
= √3/3
希望你能采纳,不懂可追问。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询