已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD
2个回答
展开全部
证明:在线段BC上截取BE=BA,连接DE.
∵BD平分∠ABC,
∴∠ABD=∠EBD=
∠ABC.
在△ABD和△EBD中,
,
∴△ABD≌△EBD.(SAS)
∴∠BED=∠A=108°,∠ADB=∠EDB.
又∵AB=AC,∠A=108°,∠ACB=∠ABC=
×(180°-108°)=36°,
∴∠ABD=∠EBD=18°.
∴∠ADB=∠EDB=180°-18°-108°=54°.
∴∠CDE=180°-∠ADB-∠EDB=180°-54°-54°=72°.
∴∠DEC=180°-∠DEB=180°-108°=72°.
∴∠CDE=∠DEC.
∴CD=CE.
∴BC=BE+EC=AB+CD.
∵BD平分∠ABC,
∴∠ABD=∠EBD=
1 |
2 |
在△ABD和△EBD中,
|
∴△ABD≌△EBD.(SAS)
∴∠BED=∠A=108°,∠ADB=∠EDB.
又∵AB=AC,∠A=108°,∠ACB=∠ABC=
1 |
2 |
∴∠ABD=∠EBD=18°.
∴∠ADB=∠EDB=180°-18°-108°=54°.
∴∠CDE=180°-∠ADB-∠EDB=180°-54°-54°=72°.
∴∠DEC=180°-∠DEB=180°-108°=72°.
∴∠CDE=∠DEC.
∴CD=CE.
∴BC=BE+EC=AB+CD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询