在解分数应用题时,怎样区分用乘法和除法
2个回答
展开全部
1.抓住关键句
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点、是关键句,所以在做分数应用题时可以先找出关键句,在关键句下面画上线,在动脑、动手的同时进一步理解题意。
2.找准单位“1”的量
不管是简单分数应用题还是稍复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。怎样找单位“1”呢?可根据以下两点来找:
(1)关键句中,分数前面有个“的”,“的”字前面的量就是单位“1”的量。如“甲的2/3是乙”,单位“1”的量是2/3前面的“甲”;“乙是甲的6/7”,单位“1”的量是“甲”。
(2)关键句中“比”字后面的量是单位“1”的量。如“鸡比兔多1/3”,单位“1”的量是比字后面的量兔;“兔比鸡少1/4”,单位“1”的量是鸡。
3.画线段图
在解答分数应用题时,画线段图可以帮助我们更好地理解题意,弄清数量之间的关系。建议同学们在做题时,一定要画出线段图。
其实,分数乘除法应用题只有三种基本问题:
(1)求一个数的几分之几是多少;
(2)已知一个数的几分之几是多少,求这个数;
(3)求一个数是另一个数的几分之几。
解这些应用题需要弄清分数乘除法的含义和分数乘除法的关系。这三种问题中的数量关系是相同的,也就是:表示单位“1”的量×分率=分率的对应量。但三种问题的已知和未知不同,因而解决问题的方法也不同。
(1)求一个数的几分之几是多少,是已知表示单位“1”的量(这个数)和分率(几分之几),求分率的对应量,就用这个数去乘上几分之几。即:表示单位“1”的量×分率=分率的对应量。
如:兔有24只,鸡是兔的3/4,鸡有多少只?在这道题中,单位“1”的量是兔,求鸡有多少只就是求兔的3/4是多少。根据数量关系式:兔的只数(表示单位“1”的量)×3/4(分率)=鸡的只数(分率的对应量),列式为:24×3/4。
(2)已知一个数的几分之见是多少,求这个数,是已知分率(几分之几)和分率对应量,去求表示单位“1”的量,就需用乘法的逆运算,即用几分之几去除对应的已知数。也就是:分率的对应量÷分率 = 表示单位“1”的量。
如:男生有18人,是女生的6/7,女生有多少人?在这道题中,单位“1”的量是女生,求女生有多少人?也就是求单位“1”的量是多少。根据数量关系式:男生人数(分率的对应量)÷6/7(分率)= 女生的人数(表示单位“1”的量),列式为:18÷6/7。
(3)求一个数是另一个数的几分之几,是已知表示单位“1”的量(另一个数)和分率对应量(一个数)去求分率,也需要用乘法的逆运算,即用这个数去除以另一个数,并写成分数的形式。
如:桃树21棵,梨树28棵,桃树是梨树的几分之几?用桃树的棵树(分率对应量)÷梨树的棵树(表示单位“1”的量)=分率,列式为:21÷28。
大家在通过大量练习后,就会发现分数乘法应用题的共同特点:单位“1”的量已知的分数应用题,用乘法计算。反之,单位“1”的量未知的分数应用题用什么方法计算呢?通过逆向思维,我们就可以知道:“用除法计算”。可见,要分清分数乘除法应用题的关键是看单位“1”的量已知与未知,单位“1”的量已知用乘法计算,单位“1”的量未知用除法计算或用解方程的方法计算。
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点、是关键句,所以在做分数应用题时可以先找出关键句,在关键句下面画上线,在动脑、动手的同时进一步理解题意。
2.找准单位“1”的量
不管是简单分数应用题还是稍复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。怎样找单位“1”呢?可根据以下两点来找:
(1)关键句中,分数前面有个“的”,“的”字前面的量就是单位“1”的量。如“甲的2/3是乙”,单位“1”的量是2/3前面的“甲”;“乙是甲的6/7”,单位“1”的量是“甲”。
(2)关键句中“比”字后面的量是单位“1”的量。如“鸡比兔多1/3”,单位“1”的量是比字后面的量兔;“兔比鸡少1/4”,单位“1”的量是鸡。
3.画线段图
在解答分数应用题时,画线段图可以帮助我们更好地理解题意,弄清数量之间的关系。建议同学们在做题时,一定要画出线段图。
其实,分数乘除法应用题只有三种基本问题:
(1)求一个数的几分之几是多少;
(2)已知一个数的几分之几是多少,求这个数;
(3)求一个数是另一个数的几分之几。
解这些应用题需要弄清分数乘除法的含义和分数乘除法的关系。这三种问题中的数量关系是相同的,也就是:表示单位“1”的量×分率=分率的对应量。但三种问题的已知和未知不同,因而解决问题的方法也不同。
(1)求一个数的几分之几是多少,是已知表示单位“1”的量(这个数)和分率(几分之几),求分率的对应量,就用这个数去乘上几分之几。即:表示单位“1”的量×分率=分率的对应量。
如:兔有24只,鸡是兔的3/4,鸡有多少只?在这道题中,单位“1”的量是兔,求鸡有多少只就是求兔的3/4是多少。根据数量关系式:兔的只数(表示单位“1”的量)×3/4(分率)=鸡的只数(分率的对应量),列式为:24×3/4。
(2)已知一个数的几分之见是多少,求这个数,是已知分率(几分之几)和分率对应量,去求表示单位“1”的量,就需用乘法的逆运算,即用几分之几去除对应的已知数。也就是:分率的对应量÷分率 = 表示单位“1”的量。
如:男生有18人,是女生的6/7,女生有多少人?在这道题中,单位“1”的量是女生,求女生有多少人?也就是求单位“1”的量是多少。根据数量关系式:男生人数(分率的对应量)÷6/7(分率)= 女生的人数(表示单位“1”的量),列式为:18÷6/7。
(3)求一个数是另一个数的几分之几,是已知表示单位“1”的量(另一个数)和分率对应量(一个数)去求分率,也需要用乘法的逆运算,即用这个数去除以另一个数,并写成分数的形式。
如:桃树21棵,梨树28棵,桃树是梨树的几分之几?用桃树的棵树(分率对应量)÷梨树的棵树(表示单位“1”的量)=分率,列式为:21÷28。
大家在通过大量练习后,就会发现分数乘法应用题的共同特点:单位“1”的量已知的分数应用题,用乘法计算。反之,单位“1”的量未知的分数应用题用什么方法计算呢?通过逆向思维,我们就可以知道:“用除法计算”。可见,要分清分数乘除法应用题的关键是看单位“1”的量已知与未知,单位“1”的量已知用乘法计算,单位“1”的量未知用除法计算或用解方程的方法计算。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询