微分中值定理证明

christcha
2014-11-08 · TA获得超过3974个赞
知道大有可为答主
回答量:1412
采纳率:100%
帮助的人:739万
展开全部
令f(x)=a^(1/x),则f'(x)=-(1/x²)(a^(1/x))·lna,由中值定理知
存在ξ∈(n,n+1),使得f'(ξ)=f(n+1)-f(n)
即a^(1/(n+1))-a^(1/n)=-(1/ξ²)(a^(1/ξ))·lna
=>[a^(1/(n+1))-a^(1/n)]/lna=(1/ξ²)a^(1/ξ)
∵n<ξ<n+1,∴1/(n+1)<1/ξ<1/n,又a>1
∴1/(n+1)²<1/ξ²<1/n²,a^(1/(n+1))<a^(1/ξ)<a^(1/n)
∴[a^(1/(n+1))]/(n+1)²<[a^(1/ξ)]/ξ²<[a^(1/n)]/n²
即[a^(1/(n+1))]/(n+1)²<[a^(1/(n+1))-a^(1/n)]/lna<[a^(1/n)]/n²
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式