在空间中,l、m、n是三条不同的直线,α、β、γ是三个不同的平面,则下列结论不正确的是( )A.若α
在空间中,l、m、n是三条不同的直线,α、β、γ是三个不同的平面,则下列结论不正确的是()A.若α∥β,α∥γ,则β∥γB.若l∥α,l∥β,α∩β=m则l∥mC.若α⊥...
在空间中,l、m、n是三条不同的直线,α、β、γ是三个不同的平面,则下列结论不正确的是( )A.若α∥β,α∥γ,则β∥γB.若l∥α,l∥β,α∩β=m则l∥mC.若α⊥β,α⊥γ,β∩γ=l,则l⊥αD.若α∩β=m,β∩γ=l,γ∩α=n,l⊥m,l⊥n,则m⊥n
展开
1个回答
展开全部
对于A,利用面面平行的性质,作第四个平面α′与α、β、γ都相交,设交线分别为a,b,c,则a∥b,a∥c,∴b∥c,同理可得另两条直线平行b′∥c′,利用面面平行的判定可得β∥γ,即A正确;
对于B,过l作平面与α、β相交,交线分别为a,b,利用线面平行的性质,可得l∥a,l∥b,∴a∥b,∵a?β,b?β,∴a∥β,∵a?α,α∩β=m,∴l∥m,可知B正确;
对于C,利用面面垂直的性质,可得在α内有两条相交直线与l垂直,根据线面垂直的判定,可得C正确;
对于D,若α∩β=m,β∩γ=l,γ∩α=n,l⊥m,l⊥n,则m⊥n或m,n相交,故D不正确.
故选D.
对于B,过l作平面与α、β相交,交线分别为a,b,利用线面平行的性质,可得l∥a,l∥b,∴a∥b,∵a?β,b?β,∴a∥β,∵a?α,α∩β=m,∴l∥m,可知B正确;
对于C,利用面面垂直的性质,可得在α内有两条相交直线与l垂直,根据线面垂直的判定,可得C正确;
对于D,若α∩β=m,β∩γ=l,γ∩α=n,l⊥m,l⊥n,则m⊥n或m,n相交,故D不正确.
故选D.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询