
(2007?佛山二模)如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R,A端与圆心O等高,AD为水平面,B端在
(2007?佛山二模)如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R,A端与圆心O等高,AD为水平面,B端在O的正上方,一个小球在A点正上方由静止释放,自由下落至A点...
(2007?佛山二模)如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R,A端与圆心O等高,AD为水平面,B端在O的正上方,一个小球在A点正上方由静止释放,自由下落至A点进入圆轨道并恰能到达B点.求:(1)释放点距A点的竖直高度;(2)落点C与O点的水平距离.
展开
1个回答
展开全部
(1)设小球距A点高为h处下落,到达B点时速度大小为vB.小球下落过程只有重力做功,故小球由最高点经A运动B点过程中机械能守恒:
mg(h-R)=
mvB2 ①
由圆周运动规律可知,小球恰能达到B点的最小速度的条件为:
mg=m
②
由①②解得:h=
R
(2)设小球由B点运动到C点所用的时间为t,小球离开B点后做平抛运动,设落点C与O点的水平距离为S,则有:
S=vBt ③
R=
gt2 ④
由②③④解得:S=
R
所以落点C与A点的水平距离x=(
?1)R
答:(1)释放点距A点的竖直高度为
R;
(2)落点C与O点的水平距离为(
?1)R.
mg(h-R)=
1 |
2 |
由圆周运动规律可知,小球恰能达到B点的最小速度的条件为:
mg=m
vB2 |
R |
由①②解得:h=
3 |
2 |
(2)设小球由B点运动到C点所用的时间为t,小球离开B点后做平抛运动,设落点C与O点的水平距离为S,则有:
S=vBt ③
R=
1 |
2 |
由②③④解得:S=
2 |
所以落点C与A点的水平距离x=(
2 |
答:(1)释放点距A点的竖直高度为
3 |
2 |
(2)落点C与O点的水平距离为(
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询