如图所示,在平面直角坐标系中,抛物线y=-x2+bx+c的图象与x轴交于A、B两点(A在B的左侧),与y轴交于C点

如图所示,在平面直角坐标系中,抛物线y=-x2+bx+c的图象与x轴交于A、B两点(A在B的左侧),与y轴交于C点.(1)试判断b与c的积是正数还是负数,为什么?(2)如... 如图所示,在平面直角坐标系中,抛物线y=-x2+bx+c的图象与x轴交于A、B两点(A在B的左侧),与y轴交于C点.(1)试判断b与c的积是正数还是负数,为什么?(2)如果AB=4,且当抛物线y=-x2+bx+c的图象向左平移一个单位时,其顶点在y轴上.①求原抛物线的表达式;②设P是线段OB上的一个动点,过点P作PE⊥x轴交原抛物线于E点.问:是否存在P点,使直线BC把△PCE分成面积之比为3:1的两部分?若存在,求出P点的坐标;若不存在,请说明理由. 展开
 我来答
手机用户76623
2014-10-08 · TA获得超过225个赞
知道答主
回答量:106
采纳率:50%
帮助的人:104万
展开全部
(1)由图象知:c>0,且x=-
b
?2
>0,即b>0,
因此bc>0,

(2)由题意知:原抛物线的对称轴为x=1,
∵AB=4,
∴A(-1,0),B(3,0),
已知A、B均在原抛物线上,则有:
?1?b+c=0
?9+3b+c=0

解得
b=2
c=3

∴原抛物线的解析式为y=-x2+2x+3.

②如图:设直线BC与PE的交点为F,
由于△CEF和△CPF等高,因此面积比等于EF和PF的比.
易知:直线BC的解析式为:y=-x+3,
设P点坐标为(m,0),(m>0)则有E(m,-m2+2m+3),F(m,-m+3),
∴EF=-m2+2m+3-(-m+3)=-m2+3m=m(-m+3),PF=-m+3,
①当EF:PF=3:1时,
m(?m+3)
?m+3
=
3
1
,解得m=3,经检验m=3是增根,不合题意舍去;
②当EF:PF=1:3时,
m(?m+3)
?m+3
=
1
3
,解得m=
1
3
,经检验m=
1
3
是原方程的解.
∴存在符合条件的P点,且坐标为P(
1
3
,0).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式