高中数学,谢谢谢谢
1个回答
展开全部
(1)f(x)=2sin(2x+π/6)
(2)设点(x0,y0)在g(x)上,那么点(π/4-x0,y0)在f(x)上
∴y0=f(π/4-x0)=2sin[2(π/4-x0)+π/6]=2sin(π/2-2xo+π/6)=2cos(2x0-π/6)
即y0=g(x0)=2cos(2x0-π/6),∴g(x)=2cos(2x-π/6)
当x=t时,f(t)=2sin(2t+π/6),g(t)=2cos(2t-π/6)
那么|MN|=|f(t)-g(t)|=2|sin(2t+π/6)-cos(2t-π/6)|
=2|√3/2*sin2t+1/2*cos2t-√3/2*cos2t-1/2*sin2t|
=(√3-1)*|sin2t-cos2t|
=(√3-1)*√2*|sin(2t-π/4)|
=(√6-√2)*|sin(2t-π/4|
当0≤t≤π/2时,-π/4≤2t-π/4≤3π/4,那么-√2/2≤sin(2t-π/4)≤1
∴0≤|sin(2t-π/4)|≤1,∴|MN|的最大值为√6-√2
望采纳
(2)设点(x0,y0)在g(x)上,那么点(π/4-x0,y0)在f(x)上
∴y0=f(π/4-x0)=2sin[2(π/4-x0)+π/6]=2sin(π/2-2xo+π/6)=2cos(2x0-π/6)
即y0=g(x0)=2cos(2x0-π/6),∴g(x)=2cos(2x-π/6)
当x=t时,f(t)=2sin(2t+π/6),g(t)=2cos(2t-π/6)
那么|MN|=|f(t)-g(t)|=2|sin(2t+π/6)-cos(2t-π/6)|
=2|√3/2*sin2t+1/2*cos2t-√3/2*cos2t-1/2*sin2t|
=(√3-1)*|sin2t-cos2t|
=(√3-1)*√2*|sin(2t-π/4)|
=(√6-√2)*|sin(2t-π/4|
当0≤t≤π/2时,-π/4≤2t-π/4≤3π/4,那么-√2/2≤sin(2t-π/4)≤1
∴0≤|sin(2t-π/4)|≤1,∴|MN|的最大值为√6-√2
望采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询