若正数a、b满足1/a+4/b=2,则a+b的最小值为多少?
展开全部
解:∵a,b>0
1/a+4/b=2
∴1/2a+2/b=1
∴a+b=(a+b)(1/2a+2/b)
=1/2+2a/b+b/2a+2
=5/2+2a/b+b/2a
≥5/2+2=9/2
∴a+b的最小值为9/2
1/a+4/b=2
∴1/2a+2/b=1
∴a+b=(a+b)(1/2a+2/b)
=1/2+2a/b+b/2a+2
=5/2+2a/b+b/2a
≥5/2+2=9/2
∴a+b的最小值为9/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/a+4/b=2
4a+b = 2ab
a+b = 2ab -3a --(1)
let S = a+b
b= S-a ---(2)
from (1) and (2)
S = 2a(S-a) -3a
S = (2a^2 + 3a) / (2a-1)
S'= (4a+3)/(2a-1) - 2(2a^2 + 3a)/(2a-1)^2
S' =0
=> (4a+3)(2a-1) - 2(2a^2 + 3a) =0 (a is not equal to 1/2)
8a^2+2a-3 - 4a^2-6a=0
4a^2-4a-3=0
(2a-3)(2a+1)=0
a= 3/2 or -1/2 (rejected)
S''(3/2) > 0 (min)
min (a+b) at a =3/2
min (a+b) = (9/2 + 9/2)/(3-1)
= 9/2 #
4a+b = 2ab
a+b = 2ab -3a --(1)
let S = a+b
b= S-a ---(2)
from (1) and (2)
S = 2a(S-a) -3a
S = (2a^2 + 3a) / (2a-1)
S'= (4a+3)/(2a-1) - 2(2a^2 + 3a)/(2a-1)^2
S' =0
=> (4a+3)(2a-1) - 2(2a^2 + 3a) =0 (a is not equal to 1/2)
8a^2+2a-3 - 4a^2-6a=0
4a^2-4a-3=0
(2a-3)(2a+1)=0
a= 3/2 or -1/2 (rejected)
S''(3/2) > 0 (min)
min (a+b) at a =3/2
min (a+b) = (9/2 + 9/2)/(3-1)
= 9/2 #
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询