求解一条简单的NOIP题
将n个不同颜色的球放入k个无标号的盒子中(n≥k,且盒子不允许为空)的方案数为S(n,k),例如:n=4,k=3时,S(n,k)=6,当n=6,k=3时,S(n,k)=_...
将n个不同颜色的球放入k个无标号的盒子中(n≥k,且盒子不允许为空)的方案数为S(n,k),例如:n=4,k=3时,S(n,k)=6,当n=6,k=3时,S(n,k)=______
请给我过程,谢谢
要是不会,帮我解一下这个递归方程就好,我没学过递归方程
S₂(n,k)=kS₂(n-1,k)+S₂(n-1,k-1) 展开
请给我过程,谢谢
要是不会,帮我解一下这个递归方程就好,我没学过递归方程
S₂(n,k)=kS₂(n-1,k)+S₂(n-1,k-1) 展开
4个回答
展开全部
s(n,k)表示将n个不同颜色的球放入k个无标号的盒子中的方案数,
根据分类加法原理,将s(n,k)个方案分为两类,
1),第n个球单独在一个盒子内,则前n-1个球在k-1个盒子内,这类方案数为s(n-1,k-1);
2),第n个球不单独在一个盒子内,则先将前n-1个球放在k个盒子内,即s(n-1,k),然后将第n个球放在k个盒子的任意一个里,即k*s(n-1,k);
所以,有S(n,k)=kS(n-1,k)+S(n-1,k-1)。
边界情况不解释,具体可看南大版中学高级本教材···
根据分类加法原理,将s(n,k)个方案分为两类,
1),第n个球单独在一个盒子内,则前n-1个球在k-1个盒子内,这类方案数为s(n-1,k-1);
2),第n个球不单独在一个盒子内,则先将前n-1个球放在k个盒子内,即s(n-1,k),然后将第n个球放在k个盒子的任意一个里,即k*s(n-1,k);
所以,有S(n,k)=kS(n-1,k)+S(n-1,k-1)。
边界情况不解释,具体可看南大版中学高级本教材···
富港检测技术(东莞)有限公司_
2024-05-27 广告
2024-05-27 广告
ISTA3E程序是对相同产品的集合包装的综合模拟性能测试,集合包装件被定义为将一个产品、多个产品或包装件放置在滑板或托盘上,固定在一起或是作为一个单元运输。例如:一台机器由带瓦楞底托的托盘上、瓦楞侧围、顶盖包装,用缠绕膜缠绕在托盘上。用于评...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
你做的是NOIP的初赛题吧。
你都写出来方程了,然后手工模拟递推一下就可以了。
此类方程的通项公式非常麻烦,需要很多高级知识,一般都是带无理数之类的东西,不会加快你的计算,我不会,NOIP也不要求。
你都写出来方程了,然后手工模拟递推一下就可以了。
此类方程的通项公式非常麻烦,需要很多高级知识,一般都是带无理数之类的东西,不会加快你的计算,我不会,NOIP也不要求。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-09-12
展开全部
你强
我贝司奏
我贝司奏
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
随便写个记忆化搜索好吧?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询